Volume 48 Issue 10
Oct.  2022
Turn off MathJax
Article Contents
XIE Song, PING Xianke, GONG Yizeet al. Effect of high altitude and low pressure on cycle performance of lithium-ion batteries[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1883-1888. doi: 10.13700/j.bh.1001-5965.2021.0776(in Chinese)
Citation: XIE Song, PING Xianke, GONG Yizeet al. Effect of high altitude and low pressure on cycle performance of lithium-ion batteries[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1883-1888. doi: 10.13700/j.bh.1001-5965.2021.0776(in Chinese)

Effect of high altitude and low pressure on cycle performance of lithium-ion batteries

doi: 10.13700/j.bh.1001-5965.2021.0776
Funds:

National Key R & D Program of China 2018YFC0809500

Sichuan Science and Technology Program 2021YFSY0001

Sichuan Science and Technology Program 2022YFG0236

Project of Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province MZ2022JB02

General Project of Civil Aviation Flight University of China J2021-098

More Information
  • Corresponding author: XIE Song, E-mail: xiesongam@163.com
  • Received Date: 19 Dec 2021
  • Accepted Date: 04 Mar 2022
  • Publish Date: 18 Mar 2022
  • Lithium-ion batteries have been used in high-altitude areas and airports in China, and therefore it is urgent to investigate their cycle performance and aging mechanism in high-altitude and low-pressure environments. The aging behavior of NCM523 pouch lithium-ion batteries is analyzed in terms of electrochemical characteristics such as battery health status, charging energy, direct current internal resistance, electrochemical impedance spectroscopy, capacity increase and differential voltage curves under 96 kPa-25℃ (normal temperature and pressure) and 60 kPa-25℃ (normal temperature and low pressure). The results show that the low pressure of 60 kPa accelerates the aging process of lithium-ion batteries. The internal structure of the battery is affected by low pressure, which increases the ohmic resistance and charge transfer resistance of the battery by 6.22% and 45.76%, respectively, compared with those under normal pressure. In addition, the lithium deintercalation reaction is limited, and the kinetic properties of the battery interface are reduced. Due to the increase of the battery impedance, the cycle capacity decays rapidly, determined by the loss of active Li+ of the cathode. The attenuation rate of the battery health state is higher by 3.08% than that under atmospheric pressure.

     

  • loading
  • [1]
    贺元骅, 郭绪乾, 伍毅. 高高原火行为研究进展[J]. 消防科学与技术, 2014, 33(5): 497-500. doi: 10.3969/j.issn.1009-0029.2014.05.007

    HE Y H, GUO X Q, WU Y. Research progress of combustion characteristics at high plateau[J]. Fire Science and Technology, 2014, 33(5): 497-500(in Chinese). doi: 10.3969/j.issn.1009-0029.2014.05.007
    [2]
    HOU J, YANG M, WANG D, et al. Fundamentals and challenges of lithium Ion batteries at temperatures between -40 and 60℃[J]. Advanced Energy Materials, 2020, 10(18): 1904152. doi: 10.1002/aenm.201904152
    [3]
    周芳, 刘思, 侯敏. 锂电池技术在储能领域的应用与发展趋势[J]. 电源技术, 2019, 43(2): 348-350. doi: 10.3969/j.issn.1002-087X.2019.02.050

    ZHOU F, LIU S, HOU M. Application and development tendency of lithium battery technology in energy storage field[J]. Chinese Journal of Power Sources, 2019, 43(2): 348-350 (in Chinese). doi: 10.3969/j.issn.1002-087X.2019.02.050
    [4]
    REN D S, FENG X N, LU L, et al. Overcharge behaviors and failure mechanism of lithium-ion batteries under different test conditions[J]. Applied Energy, 2019, 250: 323-332. doi: 10.1016/j.apenergy.2019.05.015
    [5]
    ANDO K, MATSUDA T, IMAMURA D. Degradation diagnosis of lithium-ion batteries with a LiNi0.5Co0.2Mn0.3O2and LiMn2O4 blended cathode using dV/dQ curve analysis[J]. Journal of Power Sources, 2018, 390: 278-285. doi: 10.1016/j.jpowsour.2018.04.043
    [6]
    NAUMANN M, SPINGLER F B, JOSSEN A. Analysis and modeling of cycle aging of a commercial LiFePO4/graphite cell[J]. Journal of Power Sources, 2020, 451: 227666. doi: 10.1016/j.jpowsour.2019.227666
    [7]
    ARIS A M, SHABANI B. An experimental study of a lithium ion cell operation at low temperature conditions[J]. Energy Procedia, 2017, 110: 128-135. doi: 10.1016/j.egypro.2017.03.117
    [8]
    SITU W, YANG X, LI X, et al. Effect of high temperature environment on the performance of LiNi0.5Co0.2Mn0.3O2 battery[J]. International Journal of Heat & Mass Transfer, 2017, 104: 743-748.
    [9]
    ZHANG L, MA Y, CHENG X, et al. Degradation mechanism of over-charged LiCoO2/mesocarbon microbeads battery during shallow depth of discharge cycling[J]. Journal of Power Sources, 2016, 329: 255-261. doi: 10.1016/j.jpowsour.2016.08.030
    [10]
    JIANG L, LUO Z, WU T, et al. Overcharge behavior and early warning analysis of LiNi0.5Co0.2Mn0.3O2/C lithium-ion battery with high capacity[J]. Journal of the Electrochemical Society, 2019, 166(6): A1055-A1062. doi: 10.1149/2.0661906jes
    [11]
    LIU S, WINTER M, LEWERENZ M, et al. Analysis of cyclic aging performance of commercial Li4Ti5O12-based batteries at room temperature[J]. Energy, 2019, 173(15): 1041-1053.
    [12]
    GANG N, HARAN B, POPOV B N. Capacity fade study of lithium-ion batteries cycled at high discharge rates[J]. Journal of Power Sources, 2003, 117(1-2): 160-169. doi: 10.1016/S0378-7753(03)00029-6
    [13]
    MAYSAM S, ABARDEH R H. Air pressure dependence of natural-convection heat transfer[J]. Lecture Notes in Engineering & Computer Science, 2010, 2184(1): 1183-1192.
    [14]
    廖成龙, 王刘涛, 王健雁, 等. 动力锂电池系统运行环境条件对其性能影响的研究[J]. 化工新型材料, 2020, 48(7): 167-170. doi: 10.19817/j.cnki.issn1006-3536.2020.07.038

    LIAO C L, WANG L T, WANG J Y, et al. Study on the influence of operating environment condition on the performance of REESS[J]. New Chemical Materials, 2020, 48(7): 167-170(in Chinese). doi: 10.19817/j.cnki.issn1006-3536.2020.07.038
    [15]
    COOK R W, SWAN L G, PLUCKNETT K P. Failure mode analysis of lithium ion batteries operated for low Earth orbit CubeSat applications[J]. The Journal of Energy Storage, 2020, 31(4): 101561.
    [16]
    刘磊, 王芳, 任山, 等. 海拔高度对动力电池性能的影响研究[J]. 电源技术, 2018, 42(11): 51-53. https://www.cnki.com.cn/Article/CJFDTOTAL-DYJS201811015.htm

    LIU L, WANG F, REN S, et al. Influence of altitude on perfor-mance of power battery for electric vehicle[J]. Chinese Journal of Power Sources, 2018, 42(11): 51-53(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DYJS201811015.htm
    [17]
    XIE S, REN L, YANG X, et al. Influence of cycling aging and ambient pressure on the thermal safety features of lithium-ion battery[J]. Journal of Power Sources, 2020, 448: 227425. doi: 10.1016/j.jpowsour.2019.227425
    [18]
    LU T, LUO Y, ZHANG Y, et al. Degradation analysis of commercial lithium-ion battery in long-term storage[J]. Journal of the Electrochemical Society, 2017, 164(4): A775-A784. doi: 10.1149/2.1321704jes
    [19]
    闫建忠, 张海林, 薄茜, 等. 长期存储对锂离子电池性能的影响[J]. 电池工业, 2011, 16(4): 201-204. doi: 10.3969/j.issn.1008-7923.2011.04.002

    YAN J Z, ZHANG H L, BO X, et al. Effects of long-time storage on the performance of Li-ion batteries[J]. Chinese Battery Industry, 2011, 16(4): 201-204(in Chinese). doi: 10.3969/j.issn.1008-7923.2011.04.002
    [20]
    WILHELM J, SEIDLMAYER S, KEIL P, et al. Cycling capacity recovery effect: A coulombic efficiency and post-mortem study[J]. Journal of Power Sources, 2017, 365: 327-338. doi: 10.1016/j.jpowsour.2017.08.090
    [21]
    罗卓. 锂离子电池综合使用性能的评价、修复及相关机理研究[D]. 长沙: 中南大学, 2009: 15-27.

    LUO Z. Evaluation, repair and related mechanisms of lithium-ion batteries[D]. Changsha: Central South University, 2009: 15-27(in Chinese).
    [22]
    LIU J, DUAN Q, MA M, et al. Aging mechanisms and thermal stability of aged commercial 18650 lithium ion battery induced by slight overcharging cycling[J]. Journal of Power Sources, 2020, 445: 227263. doi: 10.1016/j.jpowsour.2019.227263
    [23]
    CHO H M, CHOI W S, GO J Y, et al. A study on time-dependent low temperature power performance of a lithium-ion battery[J]. Journal of Power Sources, 2012, 198: 273-280. doi: 10.1016/j.jpowsour.2011.09.111
    [24]
    SCHMIDT J P, CHROBAK T, ENDER M, et al. Studies on LiFePO4 as cathode material using impedance spectroscopy[J]. Journal of Power Sources, 2011, 196(12): 5342-5348. doi: 10.1016/j.jpowsour.2010.09.121
    [25]
    BARAI A, CHOUCHELAMANE G H, GUO Y, et al. A study on the impact of lithium-ion cell relaxation on electrochemical impedance spectroscopy[J]. Journal of Power Sources, 2015, 280: 74-80. doi: 10.1016/j.jpowsour.2015.01.097
    [26]
    CLARK C, SIMON E. Evaluation of lithium polymer technology for small satellite applications[C]//21st Annual AIAA/USU Conference on Small Satellites, 2007: 1-11.
    [27]
    BARAI A, TANGIRALA R, UDDIN K, et al. The effect of external compressive loads on the cycle lifetime of lithium-ion pouch cells[J]. Journal of Energy Storage, 2017, 13: 211-219. doi: 10.1016/j.est.2017.07.021
    [28]
    LIU S, XIONG L, HE C. Long cycle life lithium ion battery with lithium nickel cobalt manganese oxide (NCM) cathode[J]. Journal of Power Sources, 2014, 261: 285-291. doi: 10.1016/j.jpowsour.2014.03.083
    [29]
    LIU S, SU J, ZHAO J, et al. Unraveling the capacity fading mechanisms of LiNi0.6Co0.2Mn0.2O2 at elevated temperatures[J]. Journal of Power Sources, 2018, 393: 92-98. doi: 10.1016/j.jpowsour.2018.05.029
    [30]
    FLY A, CHEN R. Rate dependency of incremental capacity analysis (dQ/dV) as a diagnostic tool for lithium-ion batteries[J]. Journal of Energy Storage, 2020, 29: 101329. doi: 10.1016/j.est.2020.101329
    [31]
    SMITH A J, DAHN J R. Delta differential capacity analysis[J]. Journal of the Electrochemical Society, 2012, 159(3): A290-A293. doi: 10.1149/2.076203jes
    [32]
    苏来锁. 多应力作用下能量型锂离子电池的老化行为研究[D]. 北京: 清华大学, 2016: 7-9.

    SU L S. Study of energy type lithium-ion cell degradation behavior under multiple stresses[D]. Beijing: Tsinghua University, 2016: 7-9(in Chinese).
    [33]
    KATO H, KOBAYASHI Y, MIYASHIRO H. Differential voltage curve analysis of a lithium-ion battery during discharge[J]. Journal of Power Sources, 2018, 398: 49-54. doi: 10.1016/j.jpowsour.2018.07.043
    [34]
    BLOOM I, JANSEN A N, ABRAHAM D P, et al. Differential voltage analyses of high-power, lithium-ion cells: 1. Technique and application[J]. Journal of Power Sources, 2005, 139(1-2): 295-303. doi: 10.1016/j.jpowsour.2004.07.021
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views(952) PDF downloads(115) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return