Volume 48 Issue 9
Sep.  2022
Turn off MathJax
Article Contents
DING Shuiting, SHAO Longtao, ZHAO Shuai, et al. Fuel injection technology of heavy fuel aircraft piston engine[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1630-1642. doi: 10.13700/j.bh.1001-5965.2022.0012(in Chinese)
Citation: DING Shuiting, SHAO Longtao, ZHAO Shuai, et al. Fuel injection technology of heavy fuel aircraft piston engine[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1630-1642. doi: 10.13700/j.bh.1001-5965.2022.0012(in Chinese)

Fuel injection technology of heavy fuel aircraft piston engine

doi: 10.13700/j.bh.1001-5965.2022.0012
Funds:

National Basic Research Program of China 2018YFB010400

National Natural Science Foundation of China 51775025

National Natural Science Foundation of China 51775013

More Information
  • Corresponding author: ZHOU Yu, E-mail: zybuaa@hotmail.com
  • Received Date: 12 Jan 2022
  • Accepted Date: 16 Feb 2022
  • Publish Date: 29 Apr 2022
  • Fuel injection technology is one of the key technologies of aviation piston engines. Its structure and characteristics directly affect the integral performance of aircraft piston engines. With the requirements of general aviation for better engine performance, the development of fuel injection technology continues. This paper summarizes the current fuel supply systems used in various heavy fuel aircraft piston engines, sorts out the classic models that are applicable to them, and reviews the advantages and disadvantages of the various fuel supply systems. It expounds some cutting-edge theories, simulation calculations and experimental methods used in the study of heavy oil injection technology, and analyzes some difficulties in heavy fuel atomization, followed by relevant suggestions for the study of heavy fuel injection technology. Finally, this paper puts forward some ideas and key technologies for the future development of heavy fuel aircraft piston engine, with a focus on providing technical guidance for the forward development of heavy fuel aircraft piston engines, thus contributing to the sustainable development of China's general aviation.

     

  • loading
  • [1]
    CHEN L F, DING S R, LIU H Y, et al. Comparative study of combustion and emissions of kerosene (RP-3), kerosene-pentanol blends and diesel in a compression ignition engine[J]. Applied Energy, 2017, 203: 91-100. doi: 10.1016/j.apenergy.2017.06.036
    [2]
    PICKETT B M, BURNETTE P F, WELLS S P, et al. Fire safety tests comparing synthetic jet and diesel fuels with JP-8[J]. Fire Safety Journal, 2011, 46(3): 89-95. doi: 10.1016/j.firesaf.2010.11.001
    [3]
    丁水汀, 宋越, 杜发荣, 等. 航空重油活塞发动机发展趋势及关键技术分析[J]. 航空动力学报, 2021, 36(6): 1121-1136. doi: 10.13224/j.cnki.jasp.2021.06.001

    DING S T, SONG Y, DU F R, et al. Analysis on development trend and key technology of aircraft heavy fuel piston engine[J]. Journal of Aerospace Power, 2021, 36(6): 1121-1136(in Chinese). doi: 10.13224/j.cnki.jasp.2021.06.001
    [4]
    郑君. 通用航空活塞发动机现状及发展趋势探讨[J]. 内燃机与配件, 2020(19): 196-198. doi: 10.3969/j.issn.1674-957X.2020.19.092

    ZHENG J. Discussion on current situation and development trend of general aviation piston engine[J]. Internal Combustion Engine & Parts, 2020(19): 196-198(in Chinese). doi: 10.3969/j.issn.1674-957X.2020.19.092
    [5]
    张奇, 杜发荣. 小功率航空活塞发动机重油技术进展[J]. 小型内燃机与车辆技术, 2014, 43(4): 81-85. doi: 10.3969/j.issn.1671-0630.2014.04.017

    ZHANG Q, DU F R. Small aero-piston engine heavy fuel technology development summary[J]. Small Internal Combustion Engine and Vehicle Technique, 2014, 43(4): 81-85(in Chinese). doi: 10.3969/j.issn.1671-0630.2014.04.017
    [6]
    杜春媛, 田梦园, 胡春明. 二冲程重油航空发动机技术发展分析[J]. 小型内燃机与车辆技术, 2020, 49(3): 92-96. https://www.cnki.com.cn/Article/CJFDTOTAL-XXNR202003018.htm

    DU C Y, TIAN M Y, HU C M. Technical development analysis of two-stroke heavy fuel aero engine[J]. Small Internal Combustion Engine and Vehicle Technique, 2020, 49(3): 92-96(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XXNR202003018.htm
    [7]
    HOOPER P. Experimental experience of cold starting a spark ignition UAV engine using low volatility fuel[J]. Aircraft Engineering and Aerospace Technology, 2017, 89(1): 106-111. doi: 10.1108/AEAT-09-2014-0137
    [8]
    王在良. 15 kW级二冲程点燃式PFI煤油活塞发动机性能试验研究[D]. 南京: 南京航空航天大学, 2018: 5.

    WANG Z L. Experimental study on performance of 15 kW two-stroke ignited PFI kerosene piston engine[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018: 5(in Chinese).
    [9]
    沈颖刚, 聂珂, 徐劲松, 等. 不同海拔下压燃式航空活塞发动机的燃烧与排放特性[J]. 推进技术, 2022, 43(4): 248-256. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS202204026.htm

    SHEN Y G, NIE K, XU J S, et al. Combustion and emission characteristics of compression-ignition aero piston engine at different altitudes[J]. Journal of Propulsion Technology, 2022, 43(4): 248-256(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS202204026.htm
    [10]
    TSACH S, CHEMLA J, PENN D. UAV systems development in IAI-Past, present & future[C]//2nd AIAA "Unmanned Unlimited"Conference and Workshop & Exhibit. Reston: AIAA, 2003: 1-19.
    [11]
    王金华, 邹季灿, 吴小仛, 等. 通过改进出油阀结构完善喷油泵性能[J]. 内燃机, 2000(6): 3-7. https://www.cnki.com.cn/Article/CJFDTOTAL-NRJJ200006000.htm

    WANG J H, ZOU J C, WU X C, et al. Improving the structure of fuel delivery valve to perfect the performance of fuel injection pump[J]. Internal Combustion Engines, 2000(6): 3-7(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NRJJ200006000.htm
    [12]
    3W International GmbH. Heavy fuel system[EB/OL]. [2022-01-02]. https://3w-international.com/.
    [13]
    DUDDY B J, LEE J, WALLUK M, et al. Conversion of a spark-ignited aircraft engine to JP-8 heavy fuel for use in unmanned aerial vehicles[J]. SAE International Journal of Engines, 2011, 4(1): 82-93. doi: 10.4271/2011-01-0145
    [14]
    尹君. 小型航空进气道喷射二冲程涡轮增压发动机的仿真分析及改进研究[D]. 北京: 北京交通大学, 2014.

    YIN J. Simulation analysis and improvement research for small aviation intake port injection two-stroke engine[D]. Beijing: Beijing Jiaotong University, 2014(in Chinese).
    [15]
    FALKOWSKI D T, ABATA D L, CHO P. The performance of a spark-ignited stratified-charge two stroke engine operating on a kerosine based aviation fuel[C]//SAE International off-Highway and Powerplant Congress and Exposition, 1997: 1-11.
    [16]
    LA C, MURPHY P, CAKEBREAD S. Benchmarking a 2-stroke spark ignition heavy fuel engine[C]//SAE World Congress & Exhibition, 2012.
    [17]
    冯光烁, 周明. 重油航空活塞发动机技术路线分析[J]. 清华大学学报(自然科学版), 2016, 56(10): 1114-1121. doi: 10.16511/j.cnki.qhdxxb.2016.22.048

    FENG G S, ZHOU M. Assessment of heavy fuel aircraft piston engine types[J]. Journal of Tsinghua University (Science and Technology), 2016, 56(10): 1114-1121(in Chinese). doi: 10.16511/j.cnki.qhdxxb.2016.22.048
    [18]
    Deltahawk Engines Inc. Two-cycle diesel engine configured for operation with high temperature combustion chamber surfaces: US, EP16907512.4[P]. 2019-05-01.
    [19]
    MATTARELLI E, PALTRINIERI F, PERINI F, et al. 2-stroke diesel engine for light aircraft: IDI vs. DI combustion systems[C]//SAE Powertrains Fuels & Lubricants Meeting, 2010.
    [20]
    于顺立, 韩建立. 柴油机的四种供油系统[J]. 工程机械与维修, 2008(9): 166. https://www.cnki.com.cn/Article/CJFDTOTAL-GCJW200809037.htm

    YU S L, HAN J L. Four fuel supply systems for diesel engines[J]. Construction Machinery & Maintenance, 2008(9): 166(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCJW200809037.htm
    [21]
    UNDERWOOD S C. Performance and emission characteristics of an aircraft turbo diesel engine using JET-A fuel[D]. Atlanta: Georgia Institute of Technology, 2008.
    [22]
    陈霄阳. AE300发动机燃油系统分析[J]. 新型工业化, 2019, 9(11): 105-107. https://www.cnki.com.cn/Article/CJFDTOTAL-XXHG201911022.htm

    CHEN X Y. Fuel system analysis of AE300 engine[J]. The Journal of New Industrialization, 2019, 9(11): 105-107(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XXHG201911022.htm
    [23]
    刘伍权, 张光超, 杨春浩, 等. RP-3航空煤油在高压共轨柴油机中的应用[J]. 军事交通学院学报, 2017, 19(11): 40-45. https://www.cnki.com.cn/Article/CJFDTOTAL-JSTO201711010.htm

    LIU W Q, ZHANG G C, YANG C H, et al. Application of RP-3 aviation kerosene in high pressure common rail diesel engine[J]. Journal of Military Transportation University, 2017, 19(11): 40-45(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSTO201711010.htm
    [24]
    韩业扬. 高压共轨柴油机过渡工况控制策略研究[D]. 镇江: 江苏大学, 2019.

    HAN Y Y. Research on control strategy of high pressure common rail diesel engine under transient condition[D]. Zhenjiang: Jiangsu University, 2019(in Chinese).
    [25]
    孙柏刚, 刘志超, 王沛, 等. 恒压式燃油系统压力波动特性研究[J]. 车用发动机, 2016(6): 36-40. https://www.cnki.com.cn/Article/CJFDTOTAL-CYFD201606007.htm

    SUN B G, LIU Z C, WANG P, et al. Research on pressure fluctuation characteristics of constant pressure fuel system[J]. Vehicle Engine, 2016(6): 36-40(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CYFD201606007.htm
    [26]
    郝磊, HELLER M, 金江善, 等. 技术创新, 迎接挑战: 燃油系统专家圆桌访谈[J]. 柴油机, 2019, 41(6): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-CYJI201906019.htm

    HAO L, HELLER M, JIN J S, et al. Technological innovation, meeting challenges—Roundtable interview with fuel system experts[J]. Diesel Engine, 2019, 41(6): 1-6(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CYJI201906019.htm
    [27]
    杨白凡. 二冲程点燃式缸内直喷重油发动机性能试验研究[D]. 南京: 南京航空航天大学, 2016.

    YANG B F. Research on a 2-stroke DISI heavy fuel engine's performance[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016(in Chinese).
    [28]
    NARDELLA F. Torsional vibration reduction for geared aviation compression ignition engines with power transmission through the camshaft or dedicated internal driveshaft a sweep through 2 and 4-stroke engines with differing numbers of cylinders and two comparison power train configurations indicate the 4-stroke, 6-cylinder engine is ideally suited for this application[C]// Noise and Vibration Conference and Exhibition, 2017: 1-8.
    [29]
    杨海青, 陈茂杰, 黄丽萍, 等. 夹气喷嘴瞬态喷雾的CFD仿真及试验[J]. 航空动力学报, 2015, 30(12): 2897-2903. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201512013.htm

    YANG H Q, CHEN M J, HUANG L P, et al. CFD simulation and experiment of transient spray for an air-assisted injector[J]. Journal of Aerospace Power, 2015, 30(12): 2897-2903(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201512013.htm
    [30]
    JIN S H, BREAR M, WATSON H, et al. An experimental study of the spray from an air-assisted direct fuel injector[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2008, 222(10): 1883-1894.
    [31]
    CATHCART G, DICKSON G, AHERN S. The application of air-assist direct injection for spark-ignited heavy fuel 2-stroke and 4-stroke engines[R]. Warrendale: SAE Technical Papers, 2005.
    [32]
    赵振峰, 俞春存, 董雪飞, 等. 二冲程重油直喷发动机混合气形成研究[J]. 航空动力学报, 2021, 36(8): 1569-1577. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI202108001.htm

    ZHAO Z F, YU C C, DONG X F, et al. Research on mixture formation of two?stroke heavy fuel direct injection engine[J]. Journal of Aerospace Power, 2021, 36(8): 1569-1577(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI202108001.htm
    [33]
    高宏力, 张付军, 刘波澜, 等. 空气辅助喷射闪急沸腾喷雾特性试验[J]. 航空动力学报, 2019, 34(1): 63-72.

    GAO H L, ZHANG F J, LIU B L, et al. Experiment on spray characteristics of air-assisted injection under flash boiling conditions[J]. Journal of Aerospace Power, 2019, 34(1): 63-72(in Chinese).
    [34]
    刘锐, 魏民祥, 杨海青, 等. 二冲程点燃式直喷煤油发动机冷起动控制策略[J]. 航空动力学报, 2017, 32(1): 213-220. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201701027.htm

    LIU R, WEI M X, YANG H Q, et al. Cold start control strategy of a two-stroke direct injection spark-ignited kerosene engine[J]. Journal of Aerospace Power, 2017, 32(1): 213-220(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201701027.htm
    [35]
    高宏力, 张付军, 王苏飞, 等. 航空煤油活塞发动机空气辅助喷射系统喷雾特性试验研究[J]. 兵工学报, 2019, 40(5): 927-937. https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201905004.htm

    GAO H L, ZHANG F J, WANG S F, et al. Experimental study of air-assisted spray characteristics of aviation kerosene piston engine[J]. Acta Armamentarii, 2019, 40(5): 927-937(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201905004.htm
    [36]
    王家雄, 徐岩. 供油系统中的液体可压缩性[C]//第十六届全国大功率柴油机学术年会, 2009: 235-237.

    WANG J X, XU Y. Liquid compressibility in the oil supply system[C]//The 16th National High-power Diesel Engine Academic Annual Conference, 2009: 235-237(in Chinese).
    [37]
    LI X. Mechanism of atomization of a liquid jet[J]. Atomization & Sprays, 1995, 5: 89-105.
    [38]
    ARIANE V, BURLUKA A A, BORGHI R, et al. Development of a eulerian model for the "atomization" of a liquid jet[J]. Atomization & Sprays, 2001, 11(6): 619-642.
    [39]
    SENECAL P K, SCHMIDT D P, NOUAR I, et al. Modeling high-speed viscous liquid sheet atomization[J]. International Journal of Multiphase Flow, 1999, 25(6-7): 1073-1097.
    [40]
    KOO J Y. An overview of liquid spray modeling formed by high-shear nozzle/swirler assembly[J]. KSME International Journal, 2003, 17(5): 726-739.
    [41]
    IYER V, ABRAHAM J. An evaluation of a two-fluid eulerian-liquid eulerian-gas model for diesel sprays[J]. Journal of Fluids Engineering, 2003, 125(4): 660-669.
    [42]
    DEMOULIN F X, BEAU P A, BLOKKEEL G, et al. A new model for turbulent flows with large density fluctuations: Application to liquid atomization[J]. Atomization and Sprays, 2007, 17(4): 315-345.
    [43]
    CASTLEMAN R A. The mechanism of the atomization of liquids[J]. Bureau of Standards Journal of Research, 1930, 6: 360-376.
    [44]
    WANG X G, HUANG Z H, KUTI O A, et al. Experimental and analytical study on biodiesel and diesel spray characteristics under ultra-high injection pressure[J]. International Journal of Heat and Fluid Flow, 2010, 31(4): 659-666.
    [45]
    LIN X D, HAN X M, LI D G. Design and evaluation for target indicated torque based engine starting control strategy in a high pressure common rail diesel engine[J]. Mathematical Problems in Engineering, 2016, 2016: 1-8.
    [46]
    GHASEMI A, BARRON R M, BALACHANDAR R. Spray-induced air motion in single and twin ultra-high injection diesel sprays[J]. Fuel, 2014, 121: 284-297.
    [47]
    林伟迪. 超高压柴油雾化及燃烧特性的三维数值模拟研究[D]. 北京: 北京交通大学, 2019.

    LIN W D. Three-dimensional numerical simulation of atomization and combustion characteristics of diesel under ultra-high injection pressures[D]. Beijing: Beijing Jiaotong University, 2019(in Chinese).
    [48]
    李宝刚. 柴油机喷雾燃烧特性实验研究[D]. 重庆: 重庆交通大学, 2015.

    LI B G. Experiment research on the spray combustion characteristics of diesel engine[D]. Chongqing: Chongqing Jiaotong University, 2015(in Chinese).
    [49]
    周凯. 压燃式航空活塞发动机关键技术分析[J]. 中国科技信息, 2017(8): 26-27. https://www.cnki.com.cn/Article/CJFDTOTAL-XXJK201708014.htm

    ZHOU K. Analysis of key technology of compression ignition aero piston engine[J]. China Science and Technology Information, 2017(8): 26-27(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XXJK201708014.htm
    [50]
    倪计民. 汽车内燃机试验技术[M]. 上海: 同济大学出版社, 1998.

    NI J M. Test technology in vehicle-engine[M]. Shanghai: Tongji University Press, 1998(in Chinese).
    [51]
    MATTARELLI E, RINALDINI C A, WILKSCH M. 2-stroke high speed diesel engines for light aircraft[J]. SAE International Journal of Engines, 2011, 4(2): 2338-2360.
    [52]
    HOOPER P R, AL-SHEMMERI T, GOODWIN M J. An experimental and analytical investigation of a multi-fuel stepped piston engine[J]. Applied Thermal Engineering, 2012, 48: 32-40.
    [53]
    SALVADOR F J, GIMENO J, DE LA MORENA J, et al. Using one-dimensional modeling to analyze the influence of the use of biodiesels on the dynamic behavior of solenoid-operated injectors in common rail systems: results of the simulations and discussion[J]. Energy Conversion and Management, 2012, 54(1): 122-132.
    [54]
    LA C, MURPHY P, CAKEBREAD S. Benchmarking a 2-stroke spark lgnition heavy fuel engine[C]//SAE 2012 World Congress & Exhibition, 2012.
    [55]
    SENER R, YANGAZ M U, GUL M Z. Effects of injection strategy and combustion chamber modification on a single-cylinder diesel engine[J]. Fuel, 2020, 266: 117122.
    [56]
    胡春明, 毕延飞, 王齐英, 等. 航空活塞式发动机瞬态空燃比控制仿真研究[J]. 航空动力学报, 2018, 33(5): 1236-1244. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201805026.htm

    HU C M, BI Y F, WANG Q Y, et al. Simulation research on transient air-fuel ratio control of aero piston engine[J]. Journal of Aerospace Power, 2018, 33(5): 1236-1244(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201805026.htm
    [57]
    王振宇, 丁水汀, 杜发荣. 航空重油发动机燃油供给系统动力学模型分析[J]. 航空动力学报, 2012, 27(4): 846-853. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201204018.htm

    WANG Z Y, DING S T, DU F R. Analysis of dynamics modeling of aviation heavy oil piston engine fuel delivery system[J]. Journal of Aerospace Power, 2012, 27(4): 846-853(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201204018.htm
    [58]
    陈林林. 二冲程煤油发动机性能数值模拟与喷油控制研究[D]. 南京: 南京航空航天大学, 2009.

    CHEN L L. Research on numerical simulation of performance and fuel injection control for two-stroke kerosene engine[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009(in Chinese).
    [59]
    李长胜. 小型高速航空重油活塞发动机混合气形成及燃烧特性的研究[D]. 北京: 北京交通大学, 2014: 27.

    LI C S. Study on the mixture formation and combustion of light-weight, high-speed, heavy oil aeroengine[D]. Beijing: Beijing Jiaotong University, 2014: 27(in Chinese).
    [60]
    石允. 小型点燃式二冲程活塞重油发动机混合气形成的模拟研究[D]. 北京: 北京交通大学, 2012: 49-92.

    SHI Y. Study on heavy-fuel mixture formation of light-weight, spark-ignition, two-stroke engine[D]. Beijing: Beijing Jiaotong University, 2012: 49-92(in Chinese).
    [61]
    刘波澜, 颜超, 于飞, 等. 重油活塞发动机夹气燃油喷射系统仿真研究[J]. 北京理工大学学报, 2021, 41(6): 597-602. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG202106004.htm

    LIU B L, YAN C, YU F, et al. Simulation research on air-assisted fuel injection system for keorsene piston engine[J]. Transactions of Beijing Institute of Technology, 2021, 41(6): 597-602(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG202106004.htm
    [62]
    陈舟. 高压共轨喷油器原尺寸透明喷嘴内线空化特性及其对喷雾影响的试验研究[D]. 镇江: 江苏大学, 2019.

    CHEN Z. Experimental study of string cavitation in real-size optical high-pressure common rail injector nozzles and its effects on spray[D]. Zhenjiang: Jiangsu University, 2019(in Chinese).
    [63]
    石智成, 吴晗, 路佩, 等. 冷起动工况柴油/煤油燃料喷雾燃烧特性研究[J]. 工程热物理学报, 2020, 41(5): 1279-1285. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB202005035.htm

    SHI Z C, WU H, LU P, et al. Spray and combustion characteristics of diesel/kerosene blends under cold-start conditions[J]. Journal of Engineering Thermophysics, 2020, 41(5): 1279-1285(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB202005035.htm
    [64]
    EAGLE W E, MORRIS S B, WOOLDRIDGE M S. High-speed imaging of transient diesel spray behavior during high pressure injection of a multi-hole fuel injector[J]. Fuel, 2014, 116: 299-309.
    [65]
    PANDEY R K, REHMAN A, SARVIYA R M. Impact of alternative fuel properties on fuel spray behavior and atomization[J]. Renewable and Sustainable Energy Reviews, 2012, 16(3): 1762-1778.
    [66]
    刘正平. 高压定容喷雾模拟实验系统研制及应用研究[D]. 北京: 北京交通大学, 2013.

    LIU Z P. Development and application of constant volume spray experiment system under high ambient pressure[D]. Beijing: Beijing Jiaotong University, 2013(in Chinese).
    [67]
    胡若, 刘福水, 王沛, 等. 电控单体泵燃油系统低速供油特性试验研究[J]. 内燃机工程, 2017, 38(1): 70-75. https://www.cnki.com.cn/Article/CJFDTOTAL-NRJG201701014.htm

    HU R, LIU F S, WANG P, et al. Experimental study on low speed fuel delivery characteristics of electronic unit pump fuel system[J]. Chinese Internal Combustion Engine Engineering, 2017, 38(1): 70-75(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NRJG201701014.htm
    [68]
    樊志强. 电控单体泵系统供油特性及其凸轮型线参数化设计[D]. 北京: 北京理工大学, 2014.

    FAN Z Q. Research on fuel supply characteristics of electronic unit pump and parametric design of its cam profile[D]. Beijing: Beijing Institute of Technology, 2014(in Chinese).
    [69]
    苏思源, 胡春明, 刘娜, 等. 活塞式航空煤油发动机冷启动性能试验[J]. 航空动力学报, 2020, 35(1): 97-105. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI202001013.htm

    SU S Y, HU C M, LIU N, et al. Experiment on cold start of piston aviation kerosene engine[J]. Journal of Aerospace Power, 2020, 35(1): 97-105(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI202001013.htm
    [70]
    韦雄, 冒晓建, 肖文雍, 等. 国产电控单体泵供油量精确测量与一致性规律分析[J]. 内燃机工程, 2011, 32(6): 54-57. https://www.cnki.com.cn/Article/CJFDTOTAL-NRJG201106010.htm

    WEI X, MAO X J, XIAO W Y, et al. Accurate measurement and consistency analysis of fuel delivery for domestic electronic unit pump[J]. Chinese Internal Combustion Engine Engineering, 2011, 32(6): 54-57(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NRJG201106010.htm
    [71]
    王睿, 杨卫平, 雷军, 等. 某10支共轨喷油器性能测试试验[J]. 拖拉机与农用运输车, 2021, 48(1): 23-26. https://www.cnki.com.cn/Article/CJFDTOTAL-TLJY202101006.htm

    WANG R, YANG W P, LEI J, et al. Performance test of 10 common-rail injectors[J]. Tractor & Farm Transporter, 2021, 48(1): 23-26(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TLJY202101006.htm
    [72]
    严明, 杨青, 王沛, 等. 启喷压力对电控单体泵供油系统喷油量的影响机理[J]. 车用发动机, 2015(1): 59-63. https://www.cnki.com.cn/Article/CJFDTOTAL-CYFD201501012.htm

    YAN M, YANG Q, WANG P, et al. Influencing mechanism of opening pressure on fuel injection quantity of electronic unit pump injection system[J]. Vehicle Engine, 2015(1): 59-63(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CYFD201501012.htm
    [73]
    周昕毅, 李铁, 王宁. 柴油蒸发喷雾瞬态液相贯穿距模型及试验验证[J]. 内燃机工程, 2020, 41(2): 8-14. https://www.cnki.com.cn/Article/CJFDTOTAL-NRJG202002002.htm

    ZHOU X Y, LI T, WANG N. Modeling and experimental verification of transient liquid penetration of diesel evaporating spray[J]. Chinese Internal Combustion Engine Engineering, 2020, 41(2): 8-14(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NRJG202002002.htm
    [74]
    岂斌. 高压共轨燃油喷射雾化特性试验研究[D]. 长沙: 中南大学, 2010.

    QI B. Experiments research on spray characteristics of diesel fuel injection system for high-pressure common rail[D]. Changsha: Central South University, 2010(in Chinese).
    [75]
    魏衍举, 章旭东, 邓胜才, 等. 强涡流场中柴油喷雾扩散特性研究[J]. 农业机械学报, 2019, 50(8): 394-399. https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201908044.htm

    WEI Y J, ZHANG X D, DENG S C, et al. Diffusion characteristics of diesel spray in swirl flows field[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(8): 394-399(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201908044.htm
    [76]
    WU H, WANG L L, WU Y, et al. Spray performance of air-assisted kerosene injection in a constant volume chamber under various in-cylinder GDI engine conditions[J]. Applied Thermal Engineering, 2019, 150: 762-769.
    [77]
    高岩飞. 点燃式煤油发动机燃油雾化技术研究[D]. 南京: 南京航空航天大学, 2010.

    GAO Y F. Research on atomization technology of kerosene in spark ignition engine[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010(in Chinese).
    [78]
    韩玉琪, 袁善虎, 王飒. "碳中和"目标牵引下的航空动力发展分析[J]. 航空动力, 2021(6): 28-30. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDL202106007.htm

    HAN Y Q, YUAN S H, WANG S. Analysis to the development of aero engine to achieve carbon neutrality[J]. Aerospace Power, 2021(6): 28-30(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDL202106007.htm
    [79]
    郭世龙. 基于柴油机电控喷油器结构参数与喷油特性相关关系的试验研究[D]. 石河子: 石河子大学, 2019.

    GUO S L. Experimental research on correlation between structural parameters and fuel injection characteristics of diesel engine controlled fuel injector[D]. Shihezi: Shihezi University, 2019(in Chinese).
    [80]
    杨耿. 轻量化单缸直喷式柴油机喷油器与燃烧系统匹配研究[D]. 南宁: 广西大学, 2016.

    YANG G. Characteristics study on light-weight single cylinder direct injection diesel engine in cylinder flow[D]. Nanning: Guangxi University, 2016(in Chinese).
    [81]
    高广新, 袁竹林, 王仁辉, 等. 高速大功率柴油机共轨喷油器关键结构设计与参数匹配[C]// 2019中国汽车工程学会年会, 2019: 77-81.

    GAO G X, YUAN G L, WANG R H, et al. Key structural design and parameter matching of common rail injector for high speed and high power diesel engine[C]//2019SAECCE-IEE, 2019: 77-81(in Chinese).
    [82]
    周兴利. 电控柴油机故障智能诊断研究[D]. 上海: 上海交通大学, 2009.

    ZHOU X L. Study of intelligence diagnosis for electronic controlled diesel engine faults[D]. Shanghai: Shanghai Jiao Tong University, 2009(in Chinese).
    [83]
    PILOTO-RODRÍGUEZ R, DÍAZ Y, MELO-ESPINOSA E A, et al. Conversion of fatty acid distillates into biodiesel: Engine performance and environmental effects[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2020, 42(4): 387-398.
    [84]
    崔宇航, 卫海桥, 王祥庭, 等. 高海拔模拟环境下柴油机燃烧粗暴可视化试验研究[J]. 天津大学学报(自然科学与工程技术版), 2022, 55(4): 383-390. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX202204008.htm

    CUI Y H, WEI H Q, WANG X T, et al. Optical experiments on diesel knock under simulated high-altitude conditions[J]. Journal of Tianjin University (Science and Technology), 2022, 55(4): 383-390(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX202204008.htm
    [85]
    王正江, 申立中, 万明定, 等. 柴油机起动过程瞬态喷油量的控制策略[J]. 内燃机学报, 2021, 39(4): 320-325. https://www.cnki.com.cn/Article/CJFDTOTAL-NRJX202104005.htm

    WANG Z J, SHEN L Z, WAN M D, et al. Transient fuel control strategy for diesel engine under starting process[J]. Transactions of CSICE, 2021, 39(4): 320-325(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NRJX202104005.htm
    [86]
    徐劲松, 聂珂, 黄国勇, 等. 压燃式航空活塞发动机转矩与空燃比的控制[J]. 航空动力学报, 2021, 36(5): 1083-1093. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI202105019.htm

    XU J S, NIE K, HUANG G Y, et al. Control of torque and air-fuel ratio of compression-ignition aero piston engine[J]. Journal of Aerospace Power, 2021, 36(5): 1083-1093(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI202105019.htm
    [87]
    MATHEWS J A. Carbon-negative biofuels[J]. Energy Policy, 2008, 36(3): 940-945.
    [88]
    RAVI V, GAO A H, MARTINKUS N B, et al. Air quality and health impacts of an aviation biofuel supply chain using forest residue in the northwestern United States[J]. Environmental Science & Technology, 2018, 52(7): 4154-4162.
    [89]
    李鹏宇, 王新校, 栾军山, 等. 基于韦伯模型的柴油机燃烧控制模型与一维仿真[J]. 内燃机与配件, 2021(21): 5-8. https://www.cnki.com.cn/Article/CJFDTOTAL-NRPJ202121003.htm

    LI P Y, WANG X X, LUAN J S, et al. Diesel engine combustion control model based on Wiebe expression and one-dimensional simulation[J]. Internal Combustion Engine & Parts, 2021(21): 5-8(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NRPJ202121003.htm
    [90]
    孙超. 柴油机燃用小球藻生物柴油Soot及NOX生成历程的数值分析[D]. 镇江: 江苏大学, 2020: 91.

    SUN C. Numerical analysis of soot and NOX generation process of diesel engine with chlorella biodiesel fuel[D]. Zhenjiang: Jiangsu University, 2020: 91(in Chinese).
    [91]
    孔祥恩, 刘海峰. 无人机用航空活塞发动机关键技术的研究进展[J]. 小型内燃机与车辆技术, 2021, 50(3): 79-87. https://www.cnki.com.cn/Article/CJFDTOTAL-XXNR202103018.htm

    KONG X E, LIU H F. Research progress of key technologies of aviation piston engine for UAV[J]. Small Internal Combustion Engine and Vehicle Technique, 2021, 50(3): 79-87(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XXNR202103018.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views(597) PDF downloads(69) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return