Volume 48 Issue 9
Sep.  2022
Turn off MathJax
Article Contents
DONG Leiting, HE Shuangxin. SGBEM-FEM coupling for thermoelastic fracture mechanics analysis of rotational components[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1702-1709. doi: 10.13700/j.bh.1001-5965.2022.0140(in Chinese)
Citation: DONG Leiting, HE Shuangxin. SGBEM-FEM coupling for thermoelastic fracture mechanics analysis of rotational components[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1702-1709. doi: 10.13700/j.bh.1001-5965.2022.0140(in Chinese)

SGBEM-FEM coupling for thermoelastic fracture mechanics analysis of rotational components

doi: 10.13700/j.bh.1001-5965.2022.0140
Funds:

Aeronautical Science Foundation of China 201909051001

More Information
  • Corresponding author: DONG Leiting, E-mail: ltdong@buaa.edu.cn
  • Received Date: 11 Mar 2022
  • Accepted Date: 08 Apr 2022
  • Publish Date: 20 Apr 2022
  • Rotational components undergo complex loads which can easily initiate cracks, resulting in fatigue and fracture failures. For thermal-loaded rotational components with cracks, the finite element method (FEM) was applied to the global structure without cracks, thus exerting the advantage of FEM in numerical analysis of large-scale structure; meanwhile, the symmetric Galerkin boundary element method (SGBEM) was employed to the subdomain around the crack, thereby developing the advantage of SGBEM in fracture analysis. The SGBEM super element, which took the influence of the rotational inertia loading and the thermal loading into consideration, was developed in this paper. The stiffness matrix of the obtained SGBEM super element was symmetric and positive semidefinite, where the rotational inertia loading and the thermal loading only influence the equivalent force vector. Thus, the SGBEM super element can be directly assembled with the stiffness matrix and the equivalent force vector of the FEM, and be coupled with the FEM to solve the thermoelastic fracture problem of rotational components. Stress intensity factors of the cracked rotational disk undergoing the thermal loading were computed, which validates the effectiveness of SGBEM super element and FEM coupling method.

     

  • loading
  • [1]
    陈予恕, 张华彪. 航空发动机整机动力学研究进展与展望[J]. 航空学报, 2011, 32(8): 1371-1391. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201108002.htm

    CHEN Y S, ZHANG H B. Review and prospect on the research of dynamics of complete aero-engine systems[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(8): 1371-1391(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201108002.htm
    [2]
    陈博, 朱剑寒, 鲁辉军. 航空发动机涡轮叶片高周疲劳裂纹故障分析与思考[J]. 燃气涡轮试验与研究, 2020, 33(3): 33-36. doi: 10.3969/j.issn.1672-2620.2020.03.007

    CHEN B, ZHU J H, LU H J. Analysis and consideration for turbine blade high-cycle fatigue crack failure of aero-engine[J]. Gas Turbine Experiment and Research, 2020, 33(3): 33-36(in Chinese). doi: 10.3969/j.issn.1672-2620.2020.03.007
    [3]
    马利丽, 何立强, 任伟峰. 航空发动机自由涡轮叶片裂纹故障分析[J]. 航空发动机, 2018, 44(6): 54-58. https://www.cnki.com.cn/Article/CJFDTOTAL-HKFJ201806010.htm

    MA L L, HE L Q, REN W F. Blade crack fault analysis of aeroengine free turbine[J]. Aeroengine, 2018, 44(6): 54-58(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKFJ201806010.htm
    [4]
    董雷霆, 周轩, 赵福斌, 等. 飞机结构数字孪生关键建模仿真技术[J]. 航空学报, 2021, 42(3): 023981. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202103012.htm

    DONG L T, ZHOU X, ZHAO F B, et al. Key technologies for modeling and simulation of airframe digital twin[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 023981(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202103012.htm
    [5]
    李其汉. 航空发动机结构完整性研究进展[J]. 航空发动机, 2014, 40(5): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-HKFJ201405001.htm

    LI Q H. Investigation progress on aeroengine structural integrity[J]. Aeroengine, 2014, 40(5): 1-6(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKFJ201405001.htm
    [6]
    王勖成. 有限单元法[M]. 北京: 清华大学出版社, 2003: 1-8.

    WANG X C. Finite element method[M]. Beijing: Tsinghua University Press, 2003: 1-8(in Chinese).
    [7]
    段静波, 李道奎, 雷勇军. 断裂力学分析的奇异有限元法研究综述[J]. 机械强度, 2012, 34(2): 262-269. https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD201202022.htm

    DUAN J B, LI D K, LEI Y J. Advances in singular finite element method for fracture mechanics analysis[J]. Journal of Mechanical Strength, 2012, 34(2): 262-269(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD201202022.htm
    [8]
    徐杰, 周迅, 陈文华, 等. 基于有限元法的表面疲劳裂纹扩展模拟[J]. 浙江理工大学学报, 2012, 29(1): 66-69. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJSG201201014.htm

    XU J, ZHOU X, CHEN W H, et al. Simulation of fatigue crack growth of surface cracked plates by finite element method[J]. Journal of Zhejiang Sci-Tech University, 2012, 29(1): 66-69(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZJSG201201014.htm
    [9]
    BONNET M, MAIER G, POLIZZOTTO C. Symmetric Galerkin boundary element methods[J]. Applied Mechanics Reviews, 1998, 51(11): 669-704.
    [10]
    SUTRADHAR A, PAULINO G H, GRAY L J. Symmetric Galerkin boundary element method[M]. Berlin: Springer-Verlag, 2008: 171-196.
    [11]
    LI S, MEAR M E, XIAO L. Symmetric weak-form integral equation method for three-dimensional fracture analysis[J]. Computer Methods in Applied Mechanics and Engineering, 1998, 151(3-4): 435-459.
    [12]
    NIKISHKOV G P. Accuracy of quarter-point element in modeling crack-tip fields[J]. Computer Modeling in Engineering and Sciences, 2013, 93(5): 335-361.
    [13]
    FRANGI A. Fracture propagation in 3D by the symmetric Galerkin boundary element method[J]. International Journal of Fracture, 2002, 116(4): 313-330.
    [14]
    FRANGI A. Regularization of boundary element formulations by the derivative transfer method[M]//BREBBIA C A, ALIABADI M H. Singular integrals in boundary element methods[M]. Southampton: Computational Mechanics Publications, 1998: 125-164.
    [15]
    HAN Z, ATLURI S. SGBEM (for cracked local subdomain): FEM (for uncracked global structure) alternating method for analyzing 3D surface cracks and their fatigue-growth[J]. Computer Modeling in Engineering & Sciences, 2002, 3(6): 699-716.
    [16]
    DONG L T, ATLURI S N. SGBEM (using non-hyper-singular traction BIE), and super elements, for non-collinear fatigue-growth analyses of cracks in stiffened panels with composite-patch repairs[J]. Computer Modeling in Engineering & Sciences, 2012, 89(5): 41-458.
    [17]
    HAN Z, ATLURI S. On simple formulations of weakly-singular traction & displacement BIE, and their solutions through petrov-Galerkin approaches[J]. Computer Modeling in Engineering & Sciences, 2003, 4(1): 5-20.
    [18]
    HE S X, WANG C Y, ZHOU X, et al. Weakly singular symmetric Galerkin boundary element method for fracture analysis of three-dimensional structures considering rotational inertia and gravitational forces[J]. Computer Modeling in Engineering & Sciences, 2022, 131(3): 1857-1882.
    [19]
    DONG L T, ATLURI S N. Fracture & fatigue analyses: SGBEM-FEM or XFEM? Part 1: 2D structures[J]. Computer Modeling in Engineering & Sciences, 2013, 90(2): 91-146.
    [20]
    DONG L T, ATLURI S N. Fracture & fatigue analyses: SGBEM-FEM or XFEM? Part 2: 3D solids[J]. Computer Modeling in Engineering & Sciences, 2013, 90(5): 379-413.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views(273) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return