Volume 48 Issue 9
Sep.  2022
Turn off MathJax
Article Contents
WANG Yingxun, SONG Xinyu, ZHAO Jiang, et al. Anti-disturbance trajectory tracking control method for aggressive quadrotors[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1806-1817. doi: 10.13700/j.bh.1001-5965.2022.0216(in Chinese)
Citation: WANG Yingxun, SONG Xinyu, ZHAO Jiang, et al. Anti-disturbance trajectory tracking control method for aggressive quadrotors[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1806-1817. doi: 10.13700/j.bh.1001-5965.2022.0216(in Chinese)

Anti-disturbance trajectory tracking control method for aggressive quadrotors

doi: 10.13700/j.bh.1001-5965.2022.0216
More Information
  • Corresponding author: CAI Zhihaoa, E-mail: czh@buaa.edu.cn
  • Received Date: 02 Apr 2022
  • Accepted Date: 26 May 2022
  • Publish Date: 14 Jun 2022
  • It is difficult for the traditional quadrotor control method with poor control effect in aggressive flight and low control accuracy to track trajectory with high speed and high acceleration. To solve this problem, a control method is proposed based on incremental nonlinear dynamic inversion(INDI) and differential flatness, as well as the complementary filter. The proposed control method not only improves the tracking accuracy of aggressive trajectories, but also enhances the anti-disturbance ability. Since the angular acceleration, which the proposed method is very sensitive to, cannot be directly obtained, a variety of angular acceleration estimation methods are designed for comparison, and the complementary filtering method with the best performance is selected through the flight test. The experimental results show that the proposed control method using INDI and differential flatness based on complementary filter can control the quadrotor to track aggressive trajectories quickly and accurately, and has strong anti-interference ability.

     

  • loading
  • [1]
    ROOT P. Fast lightweight autonomy (FLA) (Archived)[EB/OL]. (2020-04-08)[2022-04-01]. https://www.darpa.mil/program/fast-lightweight-autonomy.
    [2]
    吕震华, 高亢. 美国无人集群城市作战应用发展综述[J]. 中国电子科学研究院学报, 2020, 15(8): 738-745.

    LV Z H, GAO K. Review of the development of drone swarm urban combat applications in the USA[J]. Journal of CAEIT, 2020, 15(8): 738-745(in Chinese).
    [3]
    BYRNES C I, ISIDORI A. Nonlinear control systems[J]. Lecture Notes in Control and Information Sciences, 2003, 242(65): 408.
    [4]
    SNELL S A, NNS D F, ARRARD W L. Nonlinear inversion flight control for a supermaneuverable aircraft[J]. Guidance, 2015, 15(4): 976-984.
    [5]
    LEE D, KIM H J, SASTRY S. Feedback linearization vs. adaptive sliding mode control for a quadrotor helicopter[J]. International Journal of Control Automation and Systems, 2009, 7(3): 419-428.
    [6]
    SIEBERLING S, CHU Q P, MULDER J A. Robust flight control using incremental nonlinear dynamic inversion and angular acceleration prediction[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(6): 1732-1742.
    [7]
    SIMPLÍCIO P, PAVEL M D, VAN KAMPEN E, et al. An acceleration measurements-based approach for helicopter nonlinear flight control using incremental nonlinear dynamic inversion[J]. Control Engineering Practice, 2013, 21(8): 1065-1077.
    [8]
    LU P, VAN KAMPEN E J, DE VISSER C, et al. Aircraft fault-tolerant trajectory control using incremental nonlinear dynamic inversion aircraft fault-tolerant trajectory control using incremental nonlinear dynamic inversion[J]. Control Engineering Practice, 2016, 57: 126-141.
    [9]
    SMEUR E J, CHU Q P, CROON G. Adaptive incremental nonlinear dynamic inversion for attitude control of micro aerial vehicles: AIAA 2016-1390[R]. Reston: AIAA, 2016.
    [10]
    SMEUR E J J, DE CROON G C H E, CHU Q. Cascaded incremental nonlinear dynamic inversion for MAV disturbance rejection[J]. Control Engineering Practice, 2018, 73: 79-90.
    [11]
    TAL E, KARAMAN S. Accurate tracking of aggressive quadrotor trajectories using incremental nonlinear dynamic inversion and differential flatness[J]. IEEE Transactions on Control Systems Technology, 2021, 29(3): 1203-1218.
    [12]
    ZHAO K, ZHANG J, MA D, et al. Composite disturbance rejection attitude control for quadrotor with unknown disturbance[J]. IEEE Transactions on Industrial Electronics, 2020, 67(8): 6894-6903.
    [13]
    WANG Z, ZHAO J, CAI Z, et al. Onboard actuator model-based incremental nonlinear dynamic inversion for quadrotor attitude control: Method and application[J]. Chinese Journal of Aeronautics, 2021, 34(11): 216-227.
    [14]
    JI C H, KIM C S, KIM B S. A hybrid incremental nonlinear dynamic inversion control for improving flying qualities of asymmetric store configuration aircraft[J]. Aerospace, 2021, 8(5): 23.
    [15]
    CHEN G, LIU A, HU J, et al. Attitude and altitude control of unmanned aerial-underwater vehicle based on incremental nonlinear dynamic inversion[J]. IEEE Access, 2020, 8: 156129-156138.
    [16]
    OVASKA S J, VALIVⅡTA S. Angular acceleration measurement: A review[J]. IEEE Transactions on Instrumentation and Measurement, 1998, 47(5): 1211-1217.
    [17]
    BUBNOV A V, EMASHOV V A, CHUDINOV A N, et al. Measurement methods for angular acceleration and errors for angular velocity of synchrophase electric drive[J]. Measurement Techniques, 2014, 57(8): 860-865.
    [18]
    CHENG S, FU M, WANG M, et al. Modeling for fluid transients in liquid-circular angular accelerometer[J]. IEEE Sensors Journal, 2017, 17(2): 267-273.
    [19]
    MOKHTARI E, ELHABIBY M, SIDERIS M G. Wavelet spectral techniques for error mitigation in the superconductive angular accelerometer output of a gravity gradiometer system[J]. IEEE Sensors Journal, 2017, 17(12): 3782-3793.
    [20]
    ALROWAIS H, GETZ P, KIM M G, et al. Bio-inspired fluidic thermal angular accelerometer[C]//IEEE International Conference on Micro Electro Mechanical Systems. Piscataway: IEEE Press, 2016: 15821613.
    [21]
    COSTELLO M, JITPRAPHAI T. Determining angular velocity and angular acceleration of projectiles using triaxial acceleration measurements[J]. Journal of Spacecraft and Rockets, 2002, 39(1): 73-80.
    [22]
    VALIVⅡTA S, OVASKA S J. Delayless acceleration measurement method for elevator control[J]. IEEE Transactions on Industrial Electronics, 1998, 45(2): 364-366.
    [23]
    CHOUKROUN D, BAR-ITZHACK I Y, OSHMAN Y. Novel quaternion Kalman filter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1): 174-190.
    [24]
    VALENTI R G, DRYANOVSKI I, XIAO J. A linear Kalman filter for MARG orientation estimation using the algebraic quaternion algorithm[J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65(2): 467-481.
    [25]
    BELANGER P R, DOBROVOLNY P, HELMY A, et al. Estimation of angular velocity and acceleration from shaft encoder measurements[J]. International Journal of Robotics Research, 2002, 17(11): 1225-1233.
    [26]
    HAN J D, HE Y Q, XU W L. Angular acceleration estimation and feedback control: An experimental investigation[J]. Mechatronics, 2007, 17(9): 524-532.
    [27]
    MELLINGER D, KUMAR V. Minimum snap trajectory generation and control for quadrotors[C]//IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2011: 2520-2525.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(5)

    Article Metrics

    Article views(478) PDF downloads(98) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return