Volume 48 Issue 9
Sep.  2022
Turn off MathJax
Article Contents
XU Lijun, LIU Fulu, DING Yiqing, et al. Residual thickness detection of pipeline based on electromagnetic ultrasonic shear wave[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1767-1773. doi: 10.13700/j.bh.1001-5965.2022.0301(in Chinese)
Citation: XU Lijun, LIU Fulu, DING Yiqing, et al. Residual thickness detection of pipeline based on electromagnetic ultrasonic shear wave[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1767-1773. doi: 10.13700/j.bh.1001-5965.2022.0301(in Chinese)

Residual thickness detection of pipeline based on electromagnetic ultrasonic shear wave

doi: 10.13700/j.bh.1001-5965.2022.0301
Funds:

National Natural Science Foundation of China 61901022

Shanghai Academy of Spaceflight Technology Funds 118SAST2021117001

The Fundamental Research Funds for the Central Universities YWF-19-BJ-J-358

More Information
  • Corresponding author: XIE Yuedong, E-mail: yuedongxie@buaa.edu.cn
  • Received Date: 29 Apr 2022
  • Accepted Date: 18 May 2022
  • Publish Date: 07 Jun 2022
  • To accurately detect the residual thickness of pipeline, a non-contact pipeline thickness detection system based on the electromagnetic ultrasonic shear wave was designed. The system adopts a self-developed electromagnetic ultrasonic high-power excitation source and a transducer to generate shear wave, and the receiver is used to filter and process the echo voltage signal in real-time to obtain the accurate residual thickness of the aluminum pipe. The excitation coil parameters were optimized to improve the small-signal and low signal-to-noise ratio of the receiving signal. On this basis, the beam radiation of shear waves propagating within the pipe was analyzed. Based on the fact that the number of turns of the coil and the width of the coil are the majority influence factors to the peak-to-peak value of the echo signal and the SNR respectively, the transducer is designed and the residual thickness detection accuracy with the error less than 0.2% is achieved.

     

  • loading
  • [1]
    YOSHIDA M, ASANO T. A new method to measure the oxide layer thickness on steels using electromagnetic acoustic resonance[J]. Journal of Nondestructive Evaluation, 2003, 22: 11-19. doi: 10.1023/A:1025776030607
    [2]
    HOBBIS A, ARULESWARAN A. Non-contact thickness and profile measurements of rolled aluminium strip using EMAT[C]//AIP Conference, 2006, 820: 1772-1779.
    [3]
    PARRA-RAAD J, KHALILI P, CEGLA F. Shear waves with orthogonal polarisations for thickness measurement and crack detection using EMATs[J]. NDT & E International, 2020, 111: 1-7.
    [4]
    王相豪. 电磁超声测厚系统的设计与实现[D]. 哈尔滨: 哈尔滨工程大学, 2018: 63-69.

    WANG X H. Design and realization of electromagnetic ultrasonic thickness measurement system[D]. Harbin: Harbin Engineering University, 2018: 63-69(in Chinese).
    [5]
    唐志峰, 孙兴涛, 张鹏飞, 等. 集测厚与导波检测于一体的复合式电磁超声换能器研究[J]. 仪器仪表学报, 2020, 41(9): 98-109. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB202009011.htm

    TANG Z F, SUN X T, ZHANG P F, et al. Research on composite electromagnetic ultrasonic transducer integrating thickness measurement and guided wave detection[J]. Chinese Journal of Scientific Instrument, 2020, 41(9): 98-109(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB202009011.htm
    [6]
    孙峥, 李永虔, 杨金旭, 等. 管道内检测电磁超声在线测厚装置[J]. 中国测试, 2017, 43(2): 69-72. https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS201702014.htm

    SUN Z, LI Y W, YANG J X, et al. Thickness gauging equipment for ILI of pipelines using EMATs[J]. China Measurement & Test, 2017, 43(2): 69-72(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS201702014.htm
    [7]
    黄松岭, 王坤, 赵伟. 电磁超声导波理论与应用[M]. 北京: 清华大学出版社, 2013: 2-29.

    HUANG S L, WANG K, ZHAO W. Theory and application electromagnetic ultrasonic guided wave[M]. Beijing: Tsinghua University Press, 2013: 2-29(in Chinese).
    [8]
    RIBICHINI R, NAGY P, OGI H. The impact of magnetostriction on the transduction of normal bias field emats[J]. NDT & E International, 2012, 51: 8-15.
    [9]
    MIRKHANI K, CHAGGARES C, MASTERSON C, et al. Optimal design of EMAT transmitters[J]. NDT & E International, 2004, 37(3): 181-193.
    [10]
    JIA X J, QI O Y. Optimal design of point-focusing shear vertical wave electromagnetic ultrasonic transducers based on orthogonal test method[J]. IEEE Sensors Journal, 2018, 18(19): 8064-8073.
    [11]
    YUAN W, LIU Z, LI Y, et al. Comparative analysis of emat receiving process between ferromagnetic and nonferromagnetic materials[C]//2019 IEEE International Ultrasonics Symposium (IUS). Piscataway: IEEE Press, 2019: 611-614.
    [12]
    KANG L, DIXON S, WANG K C, et al. Enhancement of signal amplitude of surface wave EMATs based on 3D simulation analysis and orthogonal test method[J]. Ndt & E International, 2013, 59: 11-17.
    [13]
    HUANG S L, ZHAO W, ZHANG Y S, et al. Study on the lift-off effect of EMAT[J]. Sensors and Actuators A: Physical, 2009, 153(2): 218-221.
    [14]
    唐旭明, 阳能军, 李平. 电磁超声横波换能器中永磁体的建模与优化[J]. 无损探伤, 2017, 41(6): 17-22. https://www.cnki.com.cn/Article/CJFDTOTAL-WSTS201706005.htm

    TANG X M, YANG N J, LI P. Modeling method and optimum design of permanent magnet in elctromagnetic acoustic shear wave transduceers[J]. NDT, 2017, 41(6): 17-22(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WSTS201706005.htm
    [15]
    PENG J, DONG F, XU Q, et al. Orthogonal test design for optimization of supercritical fluid extraction of daphnoretin, 7-methoxy-daphnoretin and 1, 5-diphenyl-1-pentanone from Stellera chamaejasme L. and subsequent isolation by high-speed counter-current chromatography[J]. Journal of Chromatography A, 2006, 1135(2): 151-157.
    [16]
    AUGUSTYNIAK M, USAREK Z. Finite element method applied in electromagnetic NDTE: A review[J]. Journal of Nondestructive Evaluation, 2016, 35(3): 1-15.
    [17]
    DAVID J, CHEEKE N. Fundamentals and applications of ultrasonic waves[M]. 2nd ed. Boca Raton: CRC Press, 2010: 76-90.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article views(326) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return