Volume 48 Issue 9
Sep.  2022
Turn off MathJax
Article Contents
DUAN Haibin, TONG Bingda, LIU Jichuanet al. Coordinated target defense for multi-UAVs based on exponentially averaged momentum pigeon-inspired optimization[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1624-1629. doi: 10.13700/j.bh.1001-5965.2022.0308(in Chinese)
Citation: DUAN Haibin, TONG Bingda, LIU Jichuanet al. Coordinated target defense for multi-UAVs based on exponentially averaged momentum pigeon-inspired optimization[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1624-1629. doi: 10.13700/j.bh.1001-5965.2022.0308(in Chinese)

Coordinated target defense for multi-UAVs based on exponentially averaged momentum pigeon-inspired optimization

doi: 10.13700/j.bh.1001-5965.2022.0308
Funds:

Science and Technology Innovation 2030-Key Project of "New Generation Artificial Intelligence" 2018AAA0102303

National Natural Science Foundation of China U20B2071

National Natural Science Foundation of China 91948204

National Natural Science Foundation of China T2121003

National Natural Science Foundation of China U1913602

More Information
  • Corresponding author: DUAN Haibin, E-mail: hbduan@buaa.edu.cn
  • Received Date: 30 Apr 2022
  • Accepted Date: 18 May 2022
  • Publish Date: 06 Jun 2022
  • This paper proposes a multi-unmanned aerial vehicle (UAV) cooperative target defense method based on exponentially averaged momentum pigeon-inspired optimization (EM-PIO). Firstly, the multi-UAV cooperative target protection system in three-dimensional space is modeled. The surface constraint equation of the UAV-dominated area and the optimal control input of UAVs are obtained. Secondly, in order to address the constrained optimization problem, the multi-level penalty function method is used to generate the objective function of the optimization algorithm. In addition, an EM-PIO algorithm is proposed to solve the optimal point. Comparative experiments with the genetic algorithm (GA) and particle swarm optimization (PSO) are conducted. The simulation results show that the EM-PIO method can solve the multi-UAV cooperative target defense problem more effectively.

     

  • loading
  • [1]
    段海滨, 邱华鑫. 基于群体智能的无人机集群自主控制[M]. 北京: 科学出版社, 2018: 1-10.

    DUAN H B, QIU H X. Unmanned aerial vehicle swarm autonomous control based on swarm intelligence[M]. Beijing: Science Press, 2018: 1-10(in Chineses).
    [2]
    段海滨, 何杭轩, 赵彦杰, 等. 2021年无人机热点回眸[J]. 科技导报, 2022, 40(1): 215-227. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB202201013.htm

    DUAN H B, HE H X, ZHAO Y J, et al. Review of technological hotspots of unmanned aerial vehicle in 2021[J]. Science & Technology Review, 2022, 40(1): 215-227(in Chineses). https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB202201013.htm
    [3]
    ZHU K, HAN B, ZHANG T. Multi-UAV distributed collaborative coverage for target search using heuristic strategy[J]. Guidance, Navigation and Control, 2021, 1(1): 2150002. doi: 10.1142/S2737480721500023
    [4]
    HUO M Z, DUAN H B, FAN Y M. Pigeon-inspired circular formation control for multi-UAV system with limited target information[J]. Guidance, Navigation and Control, 2021, 1(1): 2150004. doi: 10.1142/S2737480721500047
    [5]
    VON MOLL A, GARCIA E, CASBEER D, et al. Multiple-pursuer, single-evader border defense differential game[J]. Journal of Aerospace Information Systems, 2020, 17(8): 407-416. doi: 10.2514/1.I010740
    [6]
    GARCIA E, CASBEER D W, VON MOLL A, et al. Multiple pursuer multiple evader differential games[J]. IEEE Transactions on Automatic Control, 2020, 66(5): 2345-2350.
    [7]
    SHISHIKA D, KUMAR V. Perimeter-defense game on arbitrary convex shapes[EB/OL]. (2021-05-01)[2022-04-28]. https://arxiv.org/abs/1909.03989.
    [8]
    SINHA A, KUMAR S R, MUKHERJEE D. Three-agent time-constrained cooperative pursuit-evasion[J]. Journal of Intelligent & Robotic Systems, 2022, 104(2): 1-27.
    [9]
    WANG J, LI G, LIANG L, et al. Pursuit-evasion games of multiple cooperative pursuers and an evader: A biological-inspired perspective[J]. Communications in Nonlinear Science and Numerical Simulation, 2022, 110: 106386. doi: 10.1016/j.cnsns.2022.106386
    [10]
    GANJEFAR S, TOFIGHI M. Dynamic economic dispatch solution using an improved genetic algorithm with non-stationary penalty functions[J]. European Transactions on Electrical Power, 2011, 21(3): 1480-1492. doi: 10.1002/etep.520
    [11]
    KONNOV I V. Application of penalty methods to non-stationary variational inequalities[J]. Nonlinear Analysis: Theory, Methods & Applications, 2013, 92: 177-182.
    [12]
    KATOCH S, CHAUHAN S S, KUMAR V. A review on genetic algorithm: Past, present, and future[J]. Multimedia Tools and Applications, 2021, 80(5): 8091-8126. doi: 10.1007/s11042-020-10139-6
    [13]
    PARSOPOULOS K E, VRAHATIS M N. Particle swarm optimization method for constrained optimization problems[J]. Intelligent Technologies-Theory and Application: New Trends in Intelligent Technologies, 2002, 76(1): 214-220.
    [14]
    DUAN H B, QIAO P. Pigeon-inspired optimization: A new swarm intelligence optimizer for air robot path planning[J]. International Journal of Intelligent Computing and Cybernetics, 2014, 7(1): 24-37. doi: 10.1108/IJICC-02-2014-0005
    [15]
    JIVANI U N, VAIDYA O B, BHATTACHARYA A, et al. A swarm variant for the schrodinger solver[C]//Proceedings of 2021 International Joint Conference on Neural Networks (IJCNN). Piscataway: IEEE Press, 2021: 1-8.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views(321) PDF downloads(59) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return