Volume 49 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
QUAN D Y,TANG Z Y,CHEN Y,et al. Radar emitter signal recognition based on MSST and HOG feature extraction[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):538-547 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0338
Citation: QUAN D Y,TANG Z Y,CHEN Y,et al. Radar emitter signal recognition based on MSST and HOG feature extraction[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):538-547 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0338

Radar emitter signal recognition based on MSST and HOG feature extraction

doi: 10.13700/j.bh.1001-5965.2022.0338
Funds:  Zhejiang Provincial Natural Science Foundation of China (LQ20F020021); Open Project Funding of the Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province (2019KF0003)
More Information
  • Corresponding author: E-mail:qdy@cjlu.edu.cn
  • Received Date: 09 May 2022
  • Accepted Date: 29 Jul 2022
  • Available Online: 13 Aug 2022
  • Publish Date: 05 Aug 2022
  • Aiming at the problem of low recognition accuracy of traditional radar signal recognition algorithms under low signal-to-noise ratio, a radar emitter recognition algorithm based on multi-synchrosqueezing transform (MSST) time-frequency transformation and histogram of direction gradient (HOG) feature extraction is proposed. The algorithm performs multiple synchronous compression processing on the basis of the short-time Fourier transform (STFT) of the radar time domain signal to obtain the signal time-frequency distribution image, then uses the HOG operator to extract the HOG feature of the signal time-frequency distribution image. The HOG features are dimensionally reduced by principal component analysis (PCA), and finally the feature parameters after dimension reduction are fed into the support vector machine (SVM) to classify and identify the radar signal. The experimental results show that the algorithm has low complexity, and when the signal-to-noise ratio is −8 dB, the recognition accuracy of the simulation experiments and hardware-in-the-loop simulation experiments for 9 typical radar signals can reach more than 90%.

     

  • loading
  • [1]
    KISHORE T R, RAO K D. Automatic intrapulse modulation classification of advanced LPI radar waveforms[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(2): 901-914. doi: 10.1109/TAES.2017.2667142
    [2]
    IGLESIAS V, GRAJAL J, ROYER P, et al. Real-time low complexity automatic modulation classifier for pulsed radar signals[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(1): 108-126. doi: 10.1109/TAES.2014.130183
    [3]
    SCHLEHER D C. LPI radar: Fact or fiction[J]. IEEE Aerospace and Electronic Systems Magazine, 2006, 21(5): 3-6. doi: 10.1109/MAES.2006.1635166
    [4]
    黄颖坤, 金炜东, 葛鹏, 等. 基于多尺度信息熵的雷达辐射源信号识别[J]. 电子与信息学报, 2019, 41(5): 1084-1091. doi: 10.11999/JEIT180535

    HUANG Y K, JIN W D, GE P, et al. Radar emitter signal identification based on multi-scale information entropy[J]. Journal of Electronics & Information Technology, 2019, 41(5): 1084-1091(in Chinese). doi: 10.11999/JEIT180535
    [5]
    徐卓君, 杨雯婷, 杨承志, 等. 雷达脉内调制识别的改进残差神经网络算法[J]. 吉林大学学报(工学版), 2021, 51(4): 1454-1460.

    XU Z J, YANG W T, YANG C Z, et al. Improved residual neural network algorithm for radar intrapulse modulation recognition[J]. Journal of Jilin University (Engineering Edition), 2021, 51(4): 1454-1460(in Chinese).
    [6]
    刘鲁涛, 戴亮军, 陈涛. 基于频谱复杂度的雷达信号调制方式识别[J]. 哈尔滨工程大学学报, 2018, 39(6): 1081-1086. doi: 10.11990/jheu.201708034

    LIU L T, DAI L J, CHEN T. Radar signal modulation recognition based on spectrum complexity[J]. Journal of Harbin Engineering University, 2018, 39(6): 1081-1086(in Chinese). doi: 10.11990/jheu.201708034
    [7]
    谢存祥, 张立民, 钟兆根. 基于时频特征提取和残差神经网络的雷达信号识别[J]. 系统工程与电子技术, 2021, 43(4): 917-926.

    XIE C X, ZHANG L M, ZHONG Z G. Radar signal recognition based on time-frequency feature extraction and residual neural network[J]. Systems Engineering and Electronics, 2021, 43(4): 917-926(in Chinese).
    [8]
    白航, 赵拥军, 胡德秀, 等. 基于Choi-Williams时频图像特征的雷达辐射源识别[J]. 数据采集与处理, 2012, 27(4): 480-485. doi: 10.3969/j.issn.1004-9037.2012.04.014

    BAI H, ZHAO Y J, HU D X, et al. Radar emitter recognition based on image feature of Choi-Williams time-frequency distribution[J]. Data Acquisition and Processing, 2012, 27(4): 480-485(in Chinese). doi: 10.3969/j.issn.1004-9037.2012.04.014
    [9]
    OBERLIN T, MEIGNEN S, PERRIER V. The Fourier-based synchrosqueezing transform[C]//2014 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE Press, 2014: 315-319.
    [10]
    倪雪, 王华力, 徐志军, 等. 基于STFT-SST和深度卷积网络的多相码雷达信号识别[J]. 数据采集与处理, 2020, 35(6): 1090-1096.

    NI X, WANG H L, XU Z J, et al. Polyphase codes radar signal recognition based on STFT-SST and deep convolutional network[J]. Data Acquisition and Processing, 2020, 35(6): 1090-1096(in Chinese).
    [11]
    YU G, WANG Z, ZHAO P. Multisynchrosqueezing transform[J]. IEEE Transactions on Industrial Electronics, 2019, 66(7): 5441-5455. doi: 10.1109/TIE.2018.2868296
    [12]
    LI D X, JIA H Y, YE Y C, et al. High power microwave signal detection based on second order multisynchrosqueezing transform[J]. Journal of Physics:Conference Series, 2020, 1617: 012049. doi: 10.1088/1742-6596/1617/1/012049
    [13]
    王功明. 雷达信号脉内特征分析与识别关键技术研究[D]. 郑州: 战略支援部队信息工程大学, 2019.

    WANG G M. Research on key technology of radar signal intra-pulse features analysis and recognition[D]. Zhengzhou: Strategic Support Force Information Engineering University, 2019(in Chinese).
    [14]
    钱红艳. 多重同步压缩变换的提升算法及其在地震信号处理中的应用[D]. 成都: 成都理工大学, 2020.

    QIAN H Y. Lifting algorithm of multiple synchronous compression transform and its application in seismic signal processing[D]. Chengdu: Chengdu University of Technology, 2020(in Chinese).
    [15]
    ATAIE R, ZARANDI A A E, MEHRABANI Y S. An efficient inexact full adder cell design in CNFET technology with high-PSNR for image processing[J]. International Journal of Electronics, 2019, 106(6): 928-944. doi: 10.1080/00207217.2019.1576232
    [16]
    申彤, 庄建军, 黎文斯, 等. 基于HOG特征提取和支持向量机的东巴文识别[J]. 南京大学学报(自然科学), 2020, 56(6): 870-876.

    SHEN T, ZHUANG J J, LI W S, et al. Research on recognition of Dongba script by a combination of HOG feature extraction and support vector machine[J]. Journal of Nanjing University (Natural Sciences), 2020, 56(6): 870-876(in Chinese).
    [17]
    孟凡杰, 唐宏, 王义哲, 等. 基于时频图像纹理特征的雷达辐射源信号识别[J]. 弹箭与制导学报, 2017, 37(3): 152-156. doi: 10.15892/j.cnki.djzdxb.2017.03.038

    MENG F J, TANG H, WANG Y Z, et al. Radar emitter signal recognition based on time-frequency image texture feature[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2017, 37(3): 152-156(in Chinese). doi: 10.15892/j.cnki.djzdxb.2017.03.038
    [18]
    郭立民, 陈鑫, 陈涛. 基于AlexNet模型的雷达信号调制类型识别[J]. 吉林大学学报(工学版), 2019, 49(3): 1000-1008.

    GUO L M, CHEN X, CHEN T. Recognition of radar signal modulation type based on AlexNet model[J]. Journal of Jilin University (Engineering Edition), 2019, 49(3): 1000-1008(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(4)

    Article Metrics

    Article views(328) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return