Volume 50 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
HUANG X H,DONG S F,YANG X Y. Optimization of energy consumption on aviation biofuel derived from lignin[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):904-912 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0347
Citation: HUANG X H,DONG S F,YANG X Y. Optimization of energy consumption on aviation biofuel derived from lignin[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):904-912 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0347

Optimization of energy consumption on aviation biofuel derived from lignin

doi: 10.13700/j.bh.1001-5965.2022.0347
Funds:  National key R & D program of China (2018YFB1501505)
More Information
  • Corresponding author: E-mail:yangxiaoyi@buaa.edu.cn
  • Received Date: 10 May 2022
  • Accepted Date: 23 Jul 2022
  • Available Online: 02 Aug 2022
  • Publish Date: 02 Aug 2022
  • The cyclic structure of lignin monomer makes it an effective precursor for the preparation of aromatic and naphthenic hydrocarbons in alternative aviation biofuel. Aspen Plus conducted a material and energy consumption analysis of various routes by comparing the features and material flow of lignin depolymerization-hydrotreating for the production of aromatic and naphthenic hydrocarbons, gasification for the production of hydrogen, and combustion for heat. The yield of aromatic hydrocarbons from lignin is 17.3%~20.7%; naphthenic hydrocarbons from lignin is 17.5%~23.7%; hydrogen from lignin is 35.519 g/kg lignin; and the heat from combustion is 22.942 MJ/kg lignin. In order to make full use of lignin, several integrated processes for biofuel production were designed with hydrogen supply from lignin gasification and heat supply from lignin combustion. By using energy analysis and optimization, the integrated process of pyrolysis-alkylation-hydrotreating for aromatic or naphthenic hydrocarbons produces a yield of 11.8% or 9.2%, with a heat load of 7.357 MJ/kg lignin or 7.687 MJ/kg lignin; for aromatic and naphthenic hydrocarbons (1∶1), the integrated process of lignin pyrolysis-alkylation-hydrotreating produces a yield of 10.3%, with a heat load of 7.538 MJ/kg lignin and hydrogen consumption of 0.27%. Although the process of lignin one-step hydrotreating for biofuel production is mild and simple, the reaction system still needs to be further improved for its significant energy consumption.

     

  • loading
  • [1]
    黄星华, 董升飞, 杨晓奕. 纤维素航油缩合-加氢工艺能耗分析[J]. 北京航空航天大学学报, 2022, 48(1): 121-131. doi: 10.13700/j.bh.1001-5965.2020.0506

    HUANG X H, DONG S F, YANG X Y. Energy consumption of condensation-hydrogenation process to prepare alkanes from lignocellulose biomass[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(1): 121-131(in Chinese). doi: 10.13700/j.bh.1001-5965.2020.0506
    [2]
    LI S, ZHENG H S, ZHENG Y J, et al. Recent advances in hydrogen production by thermo-catalytic conversion of biomass[J]. International Journal of Hydrogen Energy, 2019, 44(28): 14266-14278. doi: 10.1016/j.ijhydene.2019.03.018
    [3]
    DIESTE A, CLAVIJO L, TORRES A I, et al. Lignin from Eucalyptus SPP. Kraft Black Liquor as Biofuel[J]. Energy & Fuels, 2016, 30(12): 10494-10498.
    [4]
    CHENG F, BREWER C E. Producing jet fuel from biomass lignin: Potential pathways to alkyl-benzenes and cycloalkanes[J]. Renewable and Sustainable Energy Reviews, 2017, 72: 673-722. doi: 10.1016/j.rser.2017.01.030
    [5]
    AZADI P, INDERWILDI O R, FARNOOD R, et al. Liquid fuels, hydrogen and chemicals from lignin: A critical review[J]. Renewable and Sustainable Energy Reviews, 2013, 21: 506-523. doi: 10.1016/j.rser.2012.12.022
    [6]
    CHIO C, SAIN M, QIN W S. Lignin Utilization: A review of lignin depolymerization from various aspects[J]. Renewable and Sustainable Energy Reviews, 2019, 107: 232-249. doi: 10.1016/j.rser.2019.03.008
    [7]
    TRIBOT A, AMER G, ABDOU ALIO M, et al. Wood-lignin: Supply, extraction processes and use as bio-based material[J]. European Polymer Journal, 2019, 112: 228-240. doi: 10.1016/j.eurpolymj.2019.01.007
    [8]
    LUO Z C, WANG Y M, HE M Y, et al. Precise oxygen scission of lignin derived aryl ethers to quantitatively produce aromatic hydrocarbons in water[J]. Green Chemistry, 2016, 18(2): 433-441. doi: 10.1039/C5GC01790D
    [9]
    HONG Y C, ZHANG H, SUN J M, et al. Synergistic catalysis between Pd and Fe in Gas phase hydrodeoxygenation of m-cresol[J]. ACS Catalysis, 2014, 4(10): 3335-3345. doi: 10.1021/cs500578g
    [10]
    GUO T Y, XIA Q N, SHAO Y, et al. Direct deoxygenation of lignin model compounds into aromatic hydrocarbons through hydrogen transfer reaction[J]. Applied Catalysis A:General, 2017, 547: 30-36. doi: 10.1016/j.apcata.2017.07.050
    [11]
    SHAO Y, XIA Q N, DONG L, et al. Selective production of arenes via direct lignin upgrading over a niobium-based catalyst[J]. Nature Communications, 2017, 8(1): 16104. doi: 10.1038/ncomms16104
    [12]
    LASKAR D D, YANG B, WANG H M, et al. Pathways for biomass-derived lignin to hydrocarbon fuels[J]. Biofuels, Bioproducts and Biorefining, 2013, 7(5): 602-626. doi: 10.1002/bbb.1422
    [13]
    SAIDI M, SAMIMI F, KARIMIPOURFARD D, et al. Upgrading of lignin-derived bio-oils by catalytic hydrodeoxygenation[J]. Energy & Environmental Science, 2014, 7(1): 103-129.
    [14]
    GUAN W X, CHEN X A, JIN S H, et al. Highly stable Nb2O5-Al2O3 composites supported pt catalysts for hydrodeoxygenation of diphenyl ether[J]. Industrial & Engineering Chemistry Research, 2017, 56(47): 14034-14042.
    [15]
    LUO Z C, ZHENG Z X, WANG Y C, et al. Hydrothermally stable Ru/hzsm-5-catalyzed selective hydrogenolysis of lignin-derived substituted phenols to bio-arenes in water[J]. Green Chemistry, 2016, 18(21): 5845-5858. doi: 10.1039/C6GC01971D
    [16]
    WANG H L, FENG M Q, YANG B. Catalytic hydrodeoxygenation of anisole: An insight into the role of metals in transalkylation reactions in bio-oil upgrading[J]. Green Chemistry, 2017, 19(7): 1668-1673. doi: 10.1039/C6GC03198F
    [17]
    WU C F, WANG Z C, DUPONT V, et al. Nickel-catalysed pyrolysis/gasification of biomass components[J]. Journal of Analytical and Applied Pyrolysis, 2013, 99: 143-148. doi: 10.1016/j.jaap.2012.10.010
    [18]
    FERDOUS D, DALAI A K, BEJ S K, et al. Production of H2 and medium heating value gas via steam gasification of lignins in fixed-bed reactors[J]. The Canadian Journal of Chemical Engineering, 2001, 79(6): 913-922. doi: 10.1002/cjce.5450790609
    [19]
    KANG K, AZARGOHAR R, DALAI A, et al. Hydrogen generation via supercritical water gasification of lignin using Ni-Co/Mg-Al catalysts[J]. International Journal of Energy Research, 2017, 41(13): 1835-1846. doi: 10.1002/er.3739
    [20]
    DEMIRBAS A. Higher heating values of lignin types from wood and non-wood lignocellulosic biomasses [J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2017, 39(6): 592-598.
    [21]
    BI P Y, WANG J C, ZHANG Y J, et al. From lignin to cycloparaffins and aromatics: Directional synthesis of jet and diesel fuel range biofuels using biomass[J]. Bioresource Technology, 2015, 183: 10-17. doi: 10.1016/j.biortech.2015.02.023
    [22]
    KONG J C, HE M Y, LERCHER J A, et al. Direct production of naphthenes and paraffins from lignin[J]. Chemical Communications, 2015, 51(99): 17580-17583. doi: 10.1039/C5CC06828B
    [23]
    SHAFER L, STRIEBICH R, GOMACH J, et al. Chemical class composition of commercial jet fuels and other specialty kerosene fuels [C]//Proceedings of the 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2006.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(8)

    Article Metrics

    Article views(158) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return