Volume 50 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
HOU J H,HE K F,GAO F,et al. Shore-based BDS-R sea surface altimetry and weighting method of its observed values[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):1015-1026 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0360
Citation: HOU J H,HE K F,GAO F,et al. Shore-based BDS-R sea surface altimetry and weighting method of its observed values[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):1015-1026 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0360

Shore-based BDS-R sea surface altimetry and weighting method of its observed values

doi: 10.13700/j.bh.1001-5965.2022.0360
Funds:  National Natural Science Foundation of China (42174021); Shandong Provincial Natural Science Foundation (ZR2021MD060)
More Information
  • Corresponding author: E-mail:kfhe@upc.edu.cn
  • Received Date: 16 May 2022
  • Accepted Date: 29 Aug 2022
  • Available Online: 23 Sep 2022
  • Publish Date: 19 Sep 2022
  • With the completion of the global networking of BeiDou-3 satellite navigation system (BDS-3), its reflected signals are more and more widely used in the field of global navigation satellite system-reflectometry (GNSS-R) sea surface altimetry. A dual antenna coastal BDS-reflectometry (BDS-R) sea surface altimetry experiment based on BDS-3 B1C reflected signal code-level delay and the combination method of multi-satellite altimetry observations was carried out in order to investigate the performance of sea surface altimetry based on these two factors. The independently developed GNSS-R altimetry software receiver is used for post-processing of the experimental data, and the experimental results and the sea surface height of the shore-based synchronous observation radar altimeter were compared and analyzed to evaluate the accuracy of BDS-R sea surface altimetry. Additionally, the multi-satellite altimetry readings are combined using a weighted technique based on the signal-to-noise ratio (SNR) of the reflected signal and satellite elevation. The results show that the independently developed GNSS-R software receiver can be used for sea surface altimetry, and it is possible that the precision of BDS-R sea surface measurement based on B1C code can reach decimeter level. According to the result of moving averages with 10 s,the root mean square error (RMSE) and mean absolute error (MAE) of single satellite sea surface altimetry are 0.634 m and 0.507 m respectively, and the RMSE and MAE of the weighted combination of multi-satellite observations are 0.538 m and 0.500 m respectively. The observation accuracy of the latter is obviously better than that of the former, and the maximum and minimum observation accuracy can be improved by 70% and 17% respectively. The weighted model with thorough consideration of satellite elevation angle and reflected signal SNR is superior to other weighted models for the same signal multi-satellite GNSS-R altimetry data weighting method,and its measurement accuracy is improved by 9.4%, 9.5%, 20.5%, 35.2% compared with SNR segment model, sine function model, exponential function model, and equal weight model, respectively.

     

  • loading
  • [1]
    LOWE S T, ZUFFADA C, CHAO Y, et al. 5-cm-precision aircraft ocean altimetry using GPS reflections[J]. Geophysical Research Letters, 2002, 29(10): 1375.
    [2]
    LOWE S T, ZUFFADA C, LABRECQUE J L, et al. An ocean-altimetry measurement using reflected GPS signals observed from a low-altitude aircraft[C]//Proceedings of the IEEE International Geoscience and Remote Sensing Symposiun. Piscataway: IEEE Press, 2000 : 2185-2187.
    [3]
    CLARIZIA M P, RUF C, CIPOLLINI P, et al. First spaceborne observation of sea surface height using GPS-reflectometry[J]. Geophysical Research Letters, 2016, 43(2): 767-774. doi: 10.1002/2015GL066624
    [4]
    MARTIN-NEIRA M, CAPARRINI M, FONT-ROSSELLO J, et al. The PARIS concept: An experimental demonstration of sea surface altimetry using GPS reflected signals[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1): 142-150. doi: 10.1109/36.898676
    [5]
    王鑫, 孙强, 张训械, 等. 中国首次岸基GNSS-R海洋遥感实验[J]. 科学通报, 2008, 53(5): 589-592. doi: 10.1360/csb2008-53-5-589

    WANG X, SUN Q, ZHANG X X, et al. China’s first shore-based GNSS-R ocean remote sensing experiment[J]. Chinese Science Bulletin, 2008, 53(5): 589-592(in Chinese). doi: 10.1360/csb2008-53-5-589
    [6]
    陈世平, 方宗义, 林明森. 利用全球导航定位系统进行大气和海洋遥感[J]. 遥感技术与应用, 2005, 20(1): 30-37.

    CHEN S P, FANG Z Y, LIN M S. Remote sensing of atmosphere and oceanography using global navigation and positioning systems[J]. Remote Sensing Technology and Application, 2005, 20(1): 30-37(in Chinese).
    [7]
    JIN S, QIAN X, WU X. Sea level change from BeiDou navigation satellite system-reflectometry (BDS-R): First results and evaluation[J]. Global and Planetary Change, 2017, 149: 20-25. doi: 10.1016/j.gloplacha.2016.12.010
    [8]
    王泽明, 常亮, 冯贵平, 等. 自适应测站高的GNSS-R潮位监测研究[J]. 测绘科学, 2021, 46(8): 41-48.

    WANG Z M, CHANG L, FENG G P, et al. GNSS-R tide level monitoring based on adaptive station height[J]. Science of Surveying and Mapping, 2021, 46(8): 41-48(in Chinese).
    [9]
    MARTIN-NEIRA M. A passive reflectometry and interferometry system (PARIS): Application to ocean altimetry[J]. ESA Journal, 1993, 17(4): 331-355.
    [10]
    胡媛, 钟李程, 陈行杨, 等. GNSS-R信噪比信号在海面测高技术的研究综述[J]. 全球定位系统, 2021, 46(4): 1-7.

    HU Y, ZHONG L C, CHEN X Y, et al. A summary of research on GNSS-R signal-to-noise ratio signal height measurement technology on the sea[J]. GNSS World of China, 2021, 46(4): 1-7(in Chinese).
    [11]
    STRANDBERG J, HOBIGER T, HAAS R. Real-time sea-level monitoring using Kalman filtering of GNSS-R data[J]. GPS Solutions, 2019, 23(3): 61. doi: 10.1007/s10291-019-0851-1
    [12]
    RIUS A, CARDELLACH E, MARTIN-NEIRA M. Altimetric analysis of the sea-surface GPS-reflected signals[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(4): 2119-2127. doi: 10.1109/TGRS.2009.2036721
    [13]
    白伟华, 孙越强, 朱光武, 等. 利用岸基GNSS-R信号反演湖面高度[C]//第一届中国卫星导航学术年会. 北京: 中国科学院光电研究院, 2010: 1646-1652.

    BAI W H, SUN Y Q, ZHU G W, et al. Lake surface height retrieved using coastal GNSS-R signals[C]//Proceedings of the First China Satellite Navigation Conference. Beijing: Academy of Opto-Electronics, Chinese Academy of Sciences, 2010: 1646-1652(in Chinese).
    [14]
    SEMMLING M, BEYERLE G, BECKHEINRICH J, et al. Airborne GNSS reflectometry using crossover reference points for carrier phase altimetry[C]//Proceedings of the IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2014: 3786-3789.
    [15]
    LESTARQUIT L, PEYREZABES M, DARROZES J, et al. Reflectometry with an open-source software GNSS receiver: Use case with carrier phase altimetry[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(10): 4843-4853.
    [16]
    CARRENO-LUENGO H, CAMPS A, RAMOS-PEREZ I, et al. Experimental evaluation of GNSS-reflectometry altimetric precision using the P(Y) and C/A signals[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(5): 1493-1500. doi: 10.1109/JSTARS.2014.2320298
    [17]
    胡媛, 陈行杨, 顾旺旺, 等. GNSS-R海面测高现状及其常用方法研究进展[J]. 全球定位系统, 2020, 45(3): 96-103.

    HU Y, CHEN X Y, GU W W, et al. Research of GNSS-R sea surface altimetry status and common methods[J]. GNSS World of China, 2020, 45(3): 96-103(in Chinese).
    [18]
    ZHANG Y, TIAN L, MENG W, et al. Feasibility of code-level altimetry using coastal BeiDou reflection (BeiDou-R) setups[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(8): 4130-4140. doi: 10.1109/JSTARS.2015.2446684
    [19]
    GAO F, XU T, MENG X, et al. A coastal experiment for GNSS-R code-level altimetry using BDS-3 new civil signals[J]. Remote Sensing, 2021, 13(7): 1378. doi: 10.3390/rs13071378
    [20]
    王冬伟, 孙越强, 王先毅, 等. 使用BD-3 B2a反射信号测量水面高度[J]. 武汉大学学报·信息科学版, 2022, 47(11): 1878-1876.

    WANG D W, SUN Y Q, WANG X Y, et al. Water surface altimetry using BD-3 B2a reflected signal[J]. Geomatics and Information Science of Wuhan University, 2022, 47(11): 1878-1876(in Chinese).
    [21]
    GAO F, XU T, WANG N, et al. A shipborne experiment using a dual-antenna reflectometry system for GPS/BDS code delay measurements[J]. Journal of Geodesy, 2020, 94(9): 88. doi: 10.1007/s00190-020-01421-4
    [22]
    储倜, 贺凯飞, 高凡, 等. 基于QZSS L1信号的岸基GNSS-R码延迟海面测高[J]. 北京航空航天大学学报, 2022, 48(4): 691-697.

    CHU T, HE K F, GAO F, et al. Coastal GNSS-R ocean altimetry based on code delay of QZSS L1 signal[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(4): 691-697(in Chinese).
    [23]
    樊梦文, 张波, 王峰. 基于半无码的P(Y)码自相关GNSS-R海面测高方法[J]. 北京航空航天大学学报, 2019, 45(2): 398-404.

    FAN M W, ZHANG B, WANG F. Semi-codeless based P(Y) code autocorrelation GNSS-R sea surface altimetry method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(2): 398-404(in Chinese).
    [24]
    WILLIAMS S, NIEVISNKI F G. Tropospheric delays in ground-based GNSS multipath reflectometry-Experimental evidence from coastal sites[J]. Journal of Geophysical Research Solid Earth, 2017, 122(3): 2310-2327. doi: 10.1002/2016JB013612
    [25]
    中国卫星导航系统管理办公室. 北斗卫星导航系统空间信号接口控制文件公开服务信号 B1C(1.0 版)[S]. 北京: 中国卫星导航系统管理办公室, 2017: 3-14.

    China Satellite Navigation Office. BeiDou navigation satellite system signal in space interface control document open service signal B1C (version 1.0) [S]. Beijing: China Satellite Navigation Office, 2017: 3-14(in Chinese).
    [26]
    戴吾蛟, 丁晓利, 朱建军. 基于观测值质量指标的GPS观测量随机模型分析[J]. 武汉大学学报·信息科学版, 2008, 33(7): 718-722.

    DAI W J, DING X L, ZHU J J. Comparing GPS stochastic models based on observation quality indices[J]. Geomatics and Information Science of Wuhan University, 2008, 33(7): 718-722(in Chinese).
    [27]
    刘成, 李芳. 不同卫星定位加权方法的比较与分析[J]. 测绘科学, 2018, 43(8): 39-44.

    LIU C, LI F. Comparison and analysis of different GNSS weighting methods[J]. Science of Surveying and Mapping, 2018, 43(8): 39-44(in Chinese).
    [28]
    刘若普, 翟传润, 战兴群. 基于分段信噪比加权的GPS定位方法[J]. 信息技术, 2008, 32(9): 17-20.

    LIU R P, ZHAI C R, ZHAN X Q. A method of GPS positioning based on piecewise and weighted signal-to-noise ratio[J]. Information Technology, 2008, 32(9): 17-20(in Chinese).
    [29]
    HAN S. Quality control issues relating to ambiguity resolution for real-time GPS kinematic positioning[J]. Journal of Geodesy, 1997, 71(6): 351-361. doi: 10.1007/s001900050103
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(6)

    Article Metrics

    Article views(694) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return