Volume 50 Issue 5
May  2024
Turn off MathJax
Article Contents
ZHEN X D,WANG Z A,HU R C,et al. Aircraft flight qualities of short take-off and vertical landing[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1576-1585 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0413
Citation: ZHEN X D,WANG Z A,HU R C,et al. Aircraft flight qualities of short take-off and vertical landing[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1576-1585 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0413

Aircraft flight qualities of short take-off and vertical landing

doi: 10.13700/j.bh.1001-5965.2022.0413
Funds:  National Natural Science Foundation of China (11402115)
More Information
  • Corresponding author: E-mail:chenyl79@nuaa.edu.cn
  • Received Date: 26 May 2022
  • Accepted Date: 25 Jun 2022
  • Available Online: 16 Sep 2022
  • Publish Date: 14 Sep 2022
  • Based on the characteristics of short take-off and vertical landing (STOVL) aircraft, the flight quality requirements of STOVL aircraft are proposed in light of control efficiency and modal characteristics, combined with the AGARD 577 flight quality specification. The control efficiency of the vehicle in the transition state of STOVL is evaluated based on the STOVL 6-DOF model simulation. Drawing on the concept of equivalent system matching, the hybrid algorithm of the genetic algorithm and least square method is used to carry out low order equivalent matching of high order aircraft model with L1 adaptive controller. Using this low order model, the modal characteristics of the vehicle in longitudinal and lateral directions are evaluated. The evaluation demonstrates the first-class flight quality of the aircraft in STOVL .

     

  • loading
  • [1]
    王健, 郭锁凤. 先进的短距起飞垂直着陆技术发展综述[J]. 航空科学技术, 1999, 10(2): 24-26.

    WANG J, GUO S F. Developing status of ASTOVL technology[J]. Aeronautical Science and Technology, 1999, 10(2): 24-26(in Chinese).
    [2]
    AGARD. V/STOL handling qualities criteria[S]. Cambridge: NATO Science and Technology Organization, 1970.
    [3]
    HOGGARTH R, MANGE R. Highlights of the Lockheed Martin F-35 STOVL jet effects programme[J]. The Aeronautical Journal, 2009, 113(1140): 119-127. doi: 10.1017/S0001924000002864
    [4]
    MARTINEZ F. Performance mapping of a thrust augmenting ejector in transition for short take-off and vertical landing aircraft[J]. Journal of Aircraft, 2013, 45(2): 431-442.
    [5]
    陈坤, 史志伟, 陈永亮. 短距起飞垂直降落飞行器飞行品质研究[J]. 飞行力学, 2015, 33(3): 196-200.

    CHEN K, SHI Z W, CHEN Y L. Research of STOVL aircraft flying qualities[J]. Flight Dynamics, 2015, 33(3): 196-200(in Chinese).
    [6]
    US Department of Defense. Flying qualities of piloted V/STOL aircraft: MIL-F-83300[S]. Washington, D. C.:US Department of Defense, 1970.
    [7]
    刘亮, 唐勇, 陶呈纲, 等. 基于控制分配的推力矢量短距起飞垂直降落飞机减速过渡控制[J]. 哈尔滨工程大学学报, 2022, 43(6): 832-841.

    LIU L, TANG Y, TAO C G, et al. Deceleration transition controller design of thrust-vectored short take-off and vertical landing aircraft based on control allocation[J]. Journal of Harbin Engineering University, 2022, 43(6): 832-841(in Chinese).
    [8]
    周涛, 王子安, 龚正, 等. 推力矢量型V/STOL飞行器动态过渡过程的操纵策略优化[J]. 航空动力学报, 2023, 38(2): 408-419.

    ZHOU T, WANG Z A, GONG Z, et al. Control strategy optimization of dynamic conversion procedure of thrust-vectored V/STOL aircraft[J]. Journal of Aerospace Power, 2023, 38(2): 408-419(in Chinese).
    [9]
    王子安, 龚正, 陈永亮, 等. 复合翼无人机加速段纵向飞行特性分析与控制设计[J]. 航空动力学报, 2019, 34(10): 2177-2190.

    WANG Z A, GONG Z, CHEN Y L, et al. Longitudinal flight characteristics analysis and control design for hybrid VTOL UAV in accelerative transition[J]. Journal of Aerospace Power, 2019, 34(10): 2177-2190(in Chinese).
    [10]
    孟捷, 徐浩军, 葛志浩. 等效系统参数辨识法在飞行品质评价中的应用[J]﹒数学的实践与认识, 2008, 38(8) : 79-84.

    MENG J, XU H J, GE Z H. Parameters identification for equivalent system and its application in evaluation of flying quality[J]. Mathematics In Practice And Theory, 2008, 38(8): 79-84(in Chinese).
    [11]
    齐万涛, 吕新波, 武虎子. 基于时域数据的两种低阶等效拟配方法研究[J]. 科技和产业, 2021, 21(1): 167-170.

    QI W T, LV X B, WU H Z, Study on the two kinds of matching methods of low order equivalent system based on time-domain data[J]. Science Technology and Industry, 2021, 21(1): 167-170(in Chinese).
    [12]
    王小龙, 徐浩军, 裴彬彬, 等. 纵向短周期飞行品质评估时域分析方法[J]. 飞行力学, 2015, 33(1): 1-4.

    WANG X L, XU H J, PEI B B, et al. Time-domain analysis method for evaluation of longitudinal short period flying quality[J]. Flight Dynamics, 2015, 33(1): 1-4(in Chinese).
    [13]
    李雅静, 宋攀, 焦岗. 某型运输机纵向等效拟配的问题及分析[J]. 计算机测量与控制, 2016, 24(9): 270-273.

    LI Y J, SONG P, JIAO G. Problems and analysis of pitch axis equivalent matching for transporter[J]. Computer Measurement & Control, 2016, 24(9): 270-273(in Chinese).
    [14]
    KAMALI C, ARCHANA H, VIJEESH T, et al. Real-time desktop flying qualities evaluation simulator[J]. Defence Science Journal, 2014, 64(1): 27-32. doi: 10.14429/dsj.64.4961
    [15]
    杨俊, 张永, 肖艳平. 最小二乘法在飞机飞行品质评价中的应用[J]. 民航学报, 2018, 2(2): 30-33.

    YANG J, ZHANG Y, XIAO Y P. The application of least square method in aircraft flight quality evaluation[J]. Journal of Civil Aviation, 2018, 2(2): 30-33(in Chinese).
    [16]
    陈桂孙, 方振平. 俯仰轴飞行品质中等效系统准则的计算与模拟[J]. 飞行力学, 2003, 21(1): 16-20.

    CHEN G S, FANG Z P. Calculation and simulation of equivalent systems criteria for flying qualities of pitch axis[J]. Flight Dynamics, 2003, 21(1): 16-20(in Chinese).
    [17]
    王水英, 黄俊. 基于MatLab的俯仰轴等效系统拟配及飞行品质评价[J]. 飞机设计, 2009, 29(5): 32-36. doi: 10.3969/j.issn.1673-4599.2009.05.009

    WANG S Y, HUANG J. Pitch axis equal system match and flying quality evaluation based on MatLab[J]. Aircraft Design, 2009, 29(5): 32-36(in Chinese). doi: 10.3969/j.issn.1673-4599.2009.05.009
    [18]
    艾剑良, 邓建华, 李勇. 时域极大似然法在某主控飞机等效横航向飞行品质辨识中的应用[J]﹒西北工业大学学报, 1995, 13(1): 46-51.

    AI J L, DENG J H, LI Y. Time-domain maximum likelihood method and its application in the identification of aircraft flying quality parameters[J]. Journal of Northwestern Polytechnical University, 1995, 13(1): 46-51(in Chinese).
    [19]
    杨蔷薇, 张翔伦. 遗传算法在等效系统拟配中的应用[J]﹒飞行力学, 2005, 23(3): 45-47.

    YANG Q W, ZHANG X L. Genetic algorithm for analog-matching of equivalent system[J]. Flight Dynamics, 2005, 23(3): 45-47(in Chinese).
    [20]
    周林, 杨钊, 李杰. 基于Matlab的时域低阶等效系统的实现方法[J]. 飞行力学, 2017, 35(6): 11-15. doi: 10.3969/j.issn.1002-0853.2017.06.003

    ZHOU L, YANG Z, LI J. Implementation method of time-domain low order equivalent system based on Matlab[J]. Flight Dynamics, 2017, 35(6): 11-15(in Chinese). doi: 10.3969/j.issn.1002-0853.2017.06.003
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(10)

    Article Metrics

    Article views(395) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return