Volume 50 Issue 5
May  2024
Turn off MathJax
Article Contents
LI R Z,JIANG B,YU Z Q,et al. Data-driven fault detection and diagnosis for UAV swarms[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1586-1592 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0441
Citation: LI R Z,JIANG B,YU Z Q,et al. Data-driven fault detection and diagnosis for UAV swarms[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1586-1592 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0441

Data-driven fault detection and diagnosis for UAV swarms

doi: 10.13700/j.bh.1001-5965.2022.0441
Funds:  National Natural Science Foundation of China (62020106003,61663008); Open fund of the National Key Laboratory of Helicopter Aeromechanics (2024-ZSJ-LB-02-04)
More Information
  • Corresponding author: E-mail:binjiang@nuaa.edu.cn
  • Received Date: 31 May 2022
  • Accepted Date: 17 Jun 2022
  • Available Online: 21 Nov 2022
  • Publish Date: 19 Nov 2022
  • The security requirements of the unmanned aerial vehicle (UAV) swarm system are extremely strict, and real-time fault detection and diagnosis is one of its important supporting technologies. This paper presents a fault diagnosis method based on statistical model and improved broad learning system (BLS) model. Firstly, the behavior characteristics of UAV swarm system under normal and different fault modes are characterized by multivariate data statistical analysis, and then the improved BLS model is used to achieve accurate and rapid fault diagnosis. On this basis, a high fidelity simulation verification platform is developed to verify the rationality and effectiveness of the proposed method. The experimental results show that the proposed method has obvious diagnostic advantages compared with the current mainstream methods.

     

  • loading
  • [1]
    NAWAZ H, ALI H M, ALI LAGHARI A. UAV communication networks issues: A review[J]. Archives of Computational Methods in Engineering, 2021, 28(3): 1349-1369. doi: 10.1007/s11831-020-09418-0
    [2]
    YU Z Q, QU Y H, ZHANG Y M. Distributed fault-tolerant cooperative control for multi-UAVs under actuator fault and input saturation[J]. IEEE Transactions on Control Systems Technology, 2019, 27(6): 2417-2429. doi: 10.1109/TCST.2018.2868038
    [3]
    王莉娜, 刘贞报, 院金彪, 等. 四旋翼无人机的自适应故障诊断与估计[J]. 北京航空航天大学学报, 2023, 49(9): 2395-2405.

    WANG L N, LIU Z B, YUAN J B, et al. Adaptive fault diagnosis and estimation for quadrotor UAV[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(9): 2395-2405(in Chinese).
    [4]
    PARSINIA M, EL KHAMLICHI B, PENG Q D, et al. A distributed mode reassignment scheme for mobile multihop wireless network of FDD nodes[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(5): 3599-3612. doi: 10.1109/TAES.2020.2979035
    [5]
    SAIED M, LUSSIER B, FANTONI I, et al. Active versus passive fault-tolerant control of a redundant multirotor UAV[J]. The Aeronautical Journal, 2020, 124(1273): 385-408. doi: 10.1017/aer.2019.149
    [6]
    YU Z Q, ZHANG Y M, JIANG B, et al. A review on fault-tolerant cooperative control of multiple unmanned aerial vehicles[J]. Chinese Journal of Aeronautics, 2022, 35(1): 1-18. doi: 10.1016/j.cja.2021.04.022
    [7]
    JUNG W, BANG H. Fault and failure tolerant model predictive control of quadrotor UAV[J]. International Journal of Aeronautical and Space Sciences, 2021, 22(3): 663-675. doi: 10.1007/s42405-020-00331-1
    [8]
    YU Z Q, ZHANG Y M, JIANG B, et al. Composite adaptive disturbance observer-based decentralized fractional-order fault-tolerant control of networked UAVs[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(2): 799-813.
    [9]
    YU Z Q, ZHANG Y M, JIANG B. PID-type fault-tolerant prescribed performance control of fixed-wing UAV[J]. Journal of Systems Engineering and Electronics, 2021, 32(5): 1053-1061. doi: 10.23919/JSEE.2021.000090
    [10]
    陆宁云, 孟宪锋, 姜斌, 等. 基于多信号模型和盲源分离的复合故障诊断方法[J]. 控制与决策, 2016, 31(11): 1945-1952.

    LU N Y, MENG X F, JIANG B, et al. Compound fault diagnosis method based on multi-signal model and blind source separation[J]. Control and Decision, 2016, 31(11): 1945-1952(in Chinese).
    [11]
    HUANG J, LI M N, ZHANG Y M, et al. Fault detection and classification for sensor faults of UAV by deep learning and time-frequency analysis[C]//Proceedings of the 40th Chinese Control Conference. Piscataway: IEEE Press, 2021: 4420-4424.
    [12]
    GUO L, LI R Z, JIANG B. A cascade broad neural network for concrete structural crack damage automated classification[J]. IEEE Transactions on Industrial Informatics, 2021, 17(4): 2737-2742. doi: 10.1109/TII.2020.3010799
    [13]
    CHEN H T, JIANG B, CHEN W, et al. Data-driven detection and diagnosis of incipient faults in electrical drives of high-speed trains[J]. IEEE Transactions on Industrial Electronics, 2019, 66(6): 4716-4725. doi: 10.1109/TIE.2018.2863191
    [14]
    GUO L, LI R Z, JIANG B, et al. Automatic crack distress classification from concrete surface images using a novel deep-width network architecture[J]. Neurocomputing, 2020, 397: 383-392. doi: 10.1016/j.neucom.2019.08.107
    [15]
    GUO L, LI R Z, JIANG B. An ensemble broad learning scheme for semisupervised vehicle type classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(12): 5287-5297. doi: 10.1109/TNNLS.2021.3083508
    [16]
    WANG J, GUI G, OHTSUKI T, et al. Compressive sampled CSI feedback method based on deep learning for FDD massive MIMO systems[J]. IEEE Transactions on Communications, 2021, 69(9): 5873-5885. doi: 10.1109/TCOMM.2021.3086525
    [17]
    YANG Y W, GAO F F, ZHONG Z M, et al. Deep transfer learning-based downlink channel prediction for FDD massive MIMO systems[J]. IEEE Transactions on Communications, 2020, 68(12): 7485-7497.
    [18]
    姜斌, 陈宏田, 易辉, 等. 数据驱动高速列车动态牵引系统的故障诊断[J]. 中国科学(信息科学), 2020, 50(4): 496-510. doi: 10.1360/SSI-2019-0220

    JIANG B, CHEN H T, YI H, et al. Data-driven fault diagnosis for dynamic traction systems in high-speed trains[J]. Scientia Sinica (Informationis), 2020, 50(4): 496-510(in Chinese). doi: 10.1360/SSI-2019-0220
    [19]
    CHEN C L P, LIU Z L. Broad learning system: An effective and efficient incremental learning system without the need for deep architecture[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(1): 10-24. doi: 10.1109/TNNLS.2017.2716952
    [20]
    AMIN M T, KHAN F, AHMED S, et al. A data-driven Bayesian network learning method for process fault diagnosis[J]. Process Safety and Environmental Protection, 2021, 150: 110-122. doi: 10.1016/j.psep.2021.04.004
    [21]
    CHEN H T, JIANG B, LU N Y, et al. Deep PCA based real-time incipient fault detection and diagnosis methodology for electrical drive in high-speed trains[J]. IEEE Transactions on Vehicular Technology, 2018, 67(6): 4819-4830. doi: 10.1109/TVT.2018.2818538
    [22]
    WU D Y, ZHAO J S. Process topology convolutional network model for chemical process fault diagnosis[J]. Process Safety and Environmental Protection, 2021, 150: 93-109. doi: 10.1016/j.psep.2021.03.052
    [23]
    SHI S B, LI G N, CHEN H X, et al. An efficient VRF system fault diagnosis strategy for refrigerant charge amount based on PCA and dual neural network model[J]. Applied Thermal Engineering, 2018, 129: 1252-1262. doi: 10.1016/j.applthermaleng.2017.09.117
    [24]
    GUO L, LI R, JIANG B. Fault detection and diagnosis using statistic feature and improved broad learning for traction systems in high-speed trains[J]. IEEE Transactions on Artificial Intelligence, 2022.
    [25]
    李润泽, 郭黎, 李保平, 等. 基于模糊宽度学习模型的光伏发电预测方法[J]. 控制工程, 2020, 27(11): 2016-2022.

    LI R Z, GUO L, LI B P, et al. A photovoltaic power prediction method based on fuzzy broad learning system[J]. Control Engineering of China, 2020, 27(11): 2016-2022(in Chinese).
    [26]
    WANG S, DAI X H, KE C X, et al. RflySim: A rapid multicopter development platform for education and research based on pixhawk and MATLAB[C]//Proceedings of the International Conference on Unmanned Aircraft Systems. Piscataway: IEEE Press, 2021: 1587-1594.
    [27]
    ZHAO X Y, HE Z X, ZHANG S Y, et al. A sparse-representation-based robust inspection system for hidden defects classification in casting components[J]. Neurocomputing, 2015, 153: 1-10. doi: 10.1016/j.neucom.2014.11.057
    [28]
    CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273-297.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views(748) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return