Volume 50 Issue 6
Jun.  2024
Turn off MathJax
Article Contents
WANG X K,MENG Q W,XU H,et al. MP-WFRFT secure communication method based on multi-cascade chaotic encryption[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1960-1968 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0500
Citation: WANG X K,MENG Q W,XU H,et al. MP-WFRFT secure communication method based on multi-cascade chaotic encryption[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1960-1968 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0500

MP-WFRFT secure communication method based on multi-cascade chaotic encryption

doi: 10.13700/j.bh.1001-5965.2022.0500
Funds:  National Natural Science Foundation of China (62101591)
More Information
  • Corresponding author: E-mail:qingw_meng@163.com
  • Received Date: 17 Jun 2022
  • Accepted Date: 07 Aug 2022
  • Publish Date: 14 Sep 2022
  • To improve the secure transmission performance of the physical layer of wireless communication, a multiple parameters weighted-type fractional Fourier transform (MP-WFRFT) secure communication method based on multi-cascade chaotic encryption was proposed. The multi-cascade chaotic system based on Logistic mapping and Henon-Sine mapping was used to implement the first round of scrambling encryption for bit data and the second round of phase encryption for symbol data, and the third round of constellation encryption was carried out by using the constellation fission property of MP-WFRFT. This triple encryption scheme greatly enhanced the confidentiality of the communication system and effectively prevented brute-force attacks. Compared with the traditional low-dimensional chaotic encryption methods, the multi-cascade chaos based on Logistic mapping and Henon-Sine mapping had a larger key space and more complex system motion trajectory. For the application of multi-cascade chaotic encryption schemes in data encryption, a new bit scrambling and an improved mobile constellation rotation method were proposed to achieve data security. Simulation results and analysis show that the triple encryption scheme can effectively transmit messages securely without affecting transmission performance, and the bit error rate of non-cooperative receivers is consistently maintained at around 0.5 with only 10−15 deviations from the chaotic key.

     

  • loading
  • [1]
    ZOU Y L, ZHU J, WANG X B, et al. A survey on wireless security: Technical challenges, recent advances, and future trends[J]. Proceedings of the IEEE, 2016, 104(9): 1727-1765. doi: 10.1109/JPROC.2016.2558521
    [2]
    LIANG X H, ZHANG K, SHEN X M, et al. Security and privacy in mobile social networks: challenges and solutions[J]. IEEE Wireless Communications, 2014, 21(1): 33-41. doi: 10.1109/MWC.2014.6757895
    [3]
    JORSWIECK E, TOMASIN S, SEZGIN A. Broadcasting into the uncertainty: Authentication and confidentiality by physicallayer processing[J]. Proceedings of the IEEE, 2015, 103(10): 1702-1724.
    [4]
    MA L, WU Y L, ZHENG Z, et al. A novel real-time Fourier and inverse Fourier transforming system based on non-uniform coupled-line phaser[J]. AEU-International Journal of Electronics and Communications, 2018, 94: 102-108. doi: 10.1016/j.aeue.2018.07.001
    [5]
    陈青, 孙海信, 齐洁, 等. 加权分数傅里叶变换在混合系统中的应用[J]. 哈尔滨工业大学学报, 2016, 48(5): 100-104.

    CHEN Q, SUN H X, QI J, et al. Application of weighted fractional Fourier transform in hybrid system[J]. Journal of Harbin Institute of Technology, 2016, 48(5): 100-104(in Chinese).
    [6]
    SHIH C C. Fractionalization of Fourier transform[J]. Optics Communications, 1995, 118(5): 495-498.
    [7]
    MEI L, SHA X J, ZHANG N T. The approach to carrier scheme convergence based on 4-weighted fractional Fourier transform[J]. IEEE Communications Letters, 2010, 14(6): 503-505.
    [8]
    LANG J, TAO R, RAN Q W, et al. The multiple parameter fractional Fourier transform[J]. Science in China Series F:Information Sciences, 2008, 51(8): 1010-1024. doi: 10.1007/s11432-008-0073-6
    [9]
    WANG K, SHA X J, LI Y. Hybrid carrier modulation with time-domain windows and iterative equalization over underwater acoustic channels[J]. IEEE Communications Letters, 2013, 17(8): 1489-1492. doi: 10.1109/LCOMM.2013.070913.130744
    [10]
    FANG X J, ZHANG N, ZHANG S, et al. On physical layer security: Weighted fractional Fourier transform based user cooperation[J]. IEEE Transactions on Wireless Communications, 2017, 16(8): 5498-5510. doi: 10.1109/TWC.2017.2712158
    [11]
    王浩波, 达新宇, 徐瑞阳, 等. 双极化卫星MP-WFRFT星座裂变安全传输技术[J]. 西安电子科技大学学报, 2020, 47(3): 121-127.

    WANG H B, DA X Y, XU R Y, et al. Constellation splitting security transmission technology based on the multi-parameter weighted-type fractional Fourier transform for dual-polarized satellites[J]. Journal of Xidian University, 2020, 47(3): 121-127(in Chinese).
    [12]
    LUO Z K, WANG H L, ZHOU K J, et al. Combined constellation rotation with weighted FRFT for secure transmission in polarization modulation based dual-polarized satellite communications[J]. IEEE Access, 2017, 5: 27061-27073. doi: 10.1109/ACCESS.2017.2767638
    [13]
    蒋东华, 朱礼亚, 沈子懿, 等. 结合二维压缩感知和混沌映射的双图像视觉安全加密算法[J]. 西安交通大学学报, 2022, 56(2): 139-148.

    JIANG D H, ZHU L Y, SHEN Z Y, et al. A double image visual security encryption algorithm combining 2D compressive sensing and chaotic mapping[J]. Journal of Xi’an Jiaotong University, 2022, 56(2): 139-148(in Chinese).
    [14]
    BAI Y, LIU B, REN J X, et al. Highly secure and reliable 7-core fiber optical OFDM access system based on chaos encryption inside polar code[J]. IEEE Photonics Journal, 2022, 14(1): 7200506.
    [15]
    HUANG X R, ZHANG L M, HU W S, et al. Secure OFDM-PON using chaotic constellation mapping and probabilistic shaping[J]. IEEE Photonics Technology Letters, 2021, 33(20): 1139-1142. doi: 10.1109/LPT.2021.3108832
    [16]
    LIU F, WANG L, XIE J, et al. MP-WFRFT and chaotic scrambling aided directional modulation technique for physical layer security enhancement[J]. IEEE Access, 2019, 7: 74459-74470. doi: 10.1109/ACCESS.2019.2921109
    [17]
    ZHUANG L, HU J, CHENG J. Multilayer WFRFT and chaotic encryption wireless communication system based on MIMO[J]. Journal of Physics:Conference Series, 2020, 1453(1): 012116. doi: 10.1088/1742-6596/1453/1/012116
    [18]
    FANG X J, SHA X J, LI Y. MP-WFRFT and constellation scrambling based physical layer security system[J]. China Communications, 2016, 13(2): 138-145.
    [19]
    张喆, 达新宇, 刘慧军, 等. 卫星混合载波混沌相位扰码安全传输方案[J]. 西安交通大学学报, 2017, 51(12): 42-48.

    ZHANG Z, DA X Y, LIU H J, et al. A secure transmission scheme for satellite communications based on hybrid carrier and chaotic phase scrambling[J]. Journal of Xi’an Jiaotong University, 2017, 51(12): 42-48(in Chinese).
    [20]
    倪磊, 达新宇, 胡航, 等. 基于改进Logistic相位扰码的抗截获通信[J]. 华中科技大学学报(自然科学版), 2019, 47(6): 35-40.

    NI L, DA X Y, HU H, et al. Research on anti-interception communication based on improved Logistic phase scrambling[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2019, 47(6): 35-40(in Chinese).
    [21]
    YUAN G G, CHEN Z L, GAO X J, et al. Enhancing the security of chaotic direct sequence spread spectrum communication through WFRFT[J]. IEEE Communications Letters, 2021, 25(9): 2834-2838. doi: 10.1109/LCOMM.2021.3096388
    [22]
    WU J H, LIAO X F, YANG B. Image encryption using 2D Henon-Sine map and DNA approach[J]. Signal Processing, 2018, 153: 11-23. doi: 10.1016/j.sigpro.2018.06.008
    [23]
    王光义, 袁方. 级联混沌及其动力学特性研究[J]. 物理学报, 2013, 62(2): 111-120. doi: 10.7498/aps.62.020506

    WANG G Y, YUAN F. Cascade chaos and its dynamic characteristics[J]. Acta Physica Sinica, 2013, 62(2): 111-120(in Chinese). doi: 10.7498/aps.62.020506
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views(15) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return