Volume 50 Issue 6
Jun.  2024
Turn off MathJax
Article Contents
XU H,HAN J L,XI Y,et al. Aeroelastic morphing flight simulation platform for a folding wing aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1921-1930 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0536
Citation: XU H,HAN J L,XI Y,et al. Aeroelastic morphing flight simulation platform for a folding wing aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1921-1930 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0536

Aeroelastic morphing flight simulation platform for a folding wing aircraft

doi: 10.13700/j.bh.1001-5965.2022.0536
Funds:  National Natural Science Foundation of China (11472133)
More Information
  • Corresponding author: E-mail:hjlae@nuaa.edu.cn
  • Received Date: 29 Jun 2022
  • Accepted Date: 29 Sep 2022
  • Publish Date: 04 Nov 2022
  • The distribution of mass, stiffness, and aerodynamic load all significantly alter during the folding wing’s deformation process, which is a highly complex dynamic process. This paper develops a high-performance coupled computing program based on shared memory technology to realize the effective analysis of the dynamic process. Based on this program, it integrates flight control technology, unsteady aerodynamic calculation software, and multi-body dynamics calculation software to build an aeroelastic morphing flight simulation platform. Finally, the powerful computing and analysis capabilities of the platform are demonstrated through the simulation of aeroelastic response and flight-folding process for a folding wing aircraft.

     

  • loading
  • [1]
    RODRIGUEZ A. Morphing aircraft technology survey[C]//Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007: 1258.
    [2]
    LEE D H, WEISSHAAR T. Aeroelastic studies on a folding wing configuration[C]//Proceedings of the 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2005: 1996.
    [3]
    SNYDER M P, SANDERS B, EASTEP F E, et al. Vibration and flutter characteristics of a folding wing[J]. Journal of Aircraft, 2009, 46(3): 791-799. doi: 10.2514/1.34685
    [4]
    顾鑫. 柔性折叠翼飞行器飞行动力学问题研究[D]. 南京: 南京航空航天大学, 2012: 24-34.

    GU X. Flight dynamic studies of a flexible folding wing aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012: 24-34(in Chinese).
    [5]
    迟圣威. 折叠翼颤振理论分析和计算方法[D]. 南京: 南京航空航天大学, 2011: 36-44.

    CHI S W. Theoretical and computational flutter study for folding wing configuration[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011: 36-44(in Chinese).
    [6]
    ZHAO Y H, HU H Y. Prediction of transient responses of a folding wing during the morphing process[J]. Aerospace Science and Technology, 2013, 24(1): 89-94. doi: 10.1016/j.ast.2011.09.001
    [7]
    HU W, YANG Z C, GU Y S. Aeroelastic study for folding wing during the morphing process[J]. Journal of Sound and Vibration, 2016, 365: 216-229. doi: 10.1016/j.jsv.2015.11.043
    [8]
    REICH G, BOWMAN J, SANDERS B, et al. Development of an integrated aeroelastic multi-body morphing simulation tool[C]//Proceedings of the 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2006: 1892.
    [9]
    BOWMAN J, REICH G, SANDERS B, et al. Simulation tool for analyzing complex shape-changing mechanisms in aircraft[C]//Proceedings of the AIAA Modeling and Simulation Technologies Conference and Exhibit. Reston: AIAA, 2006: 6727.
    [10]
    SCARLETT J, CANFIELD R, SANDERS B. Multibody dynamic aeroelastic simulation of a folding wing aircraft[C]//Proceedings of the 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2006: 2135.
    [11]
    沈怡颹, 何益康, 高四宏, 等. 基于同步仿真的卫星姿轨控软件验证方法[J]. 飞控与探测, 2018, 1(2): 23-27.

    SHEN Y W, HE Y K, GAO S H, et al. A verification method of satellite attitude and orbit control software based on synchronous simulation[J]. Flight Control & Detection, 2018, 1(2): 23-27(in Chinese).
    [12]
    李增刚. ADAMS入门详解与实例[M]. 2版. 北京: 国防工业出版社, 2014: 127-135.

    LI Z G. Detailed introduction and examples of ADAMS[M]. 2nd ed. Beijing: National Defense Industry Press, 2014: 127-135(in Chinese).
    [13]
    纪玉杰, 杨强, 孙志礼, 等. 应用C语言编写ADAMS用户自定义函数的研究[J]. 机械设计与制造, 2006(1): 101-103. doi: 10.3969/j.issn.1001-3997.2006.01.046

    JI Y J, YANG Q, SUN Z L, et al. The research on writing user-written subroutine of ADAMS in C programming language[J]. Machinery Design & Manufacture, 2006(1): 101-103(in Chinese). doi: 10.3969/j.issn.1001-3997.2006.01.046
    [14]
    赵永辉. 气动弹性力学与控制[M]. 北京: 科学出版社, 2007: 310-319.

    ZHAO Y H. Aeroelastic mechanics and control[M]. Beijing: Science Press, 2007: 310-319(in Chinese).
    [15]
    管德. 非定常空气动力计算[M]. 北京: 北京航空航天大学出版社, 1991.

    GUAN D. Unsteady aerodynamic calculation[M]. Beijing: Beihang University Press, 1991(in Chinese).
    [16]
    HARDER R L, DESMARAIS R N. Interpolation using surface splines[J]. Journal of Aircraft, 1972, 9(2): 189-191. doi: 10.2514/3.44330
    [17]
    KARPEL M. Design for active flutter suppression and gust alleviation using state-space aeroelastic modeling[J]. Journal of Aircraft, 1982, 19(3): 221-227. doi: 10.2514/3.57379
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Article Metrics

    Article views(32) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return