Volume 50 Issue 6
Jun.  2024
Turn off MathJax
Article Contents
LI X Q,ZHANG H G,WANG S,et al. Development and experimental of friction tester for aluminum alloy sheet stamping[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1898-1910 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0542
Citation: LI X Q,ZHANG H G,WANG S,et al. Development and experimental of friction tester for aluminum alloy sheet stamping[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1898-1910 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0542

Development and experimental of friction tester for aluminum alloy sheet stamping

doi: 10.13700/j.bh.1001-5965.2022.0542
Funds:  National Natural Science Foundation of China (52075025); The Fundamental Research Funds for the Central Universities (YWF-22-L-504)
More Information
  • Corresponding author: E-mail:lixiaoqiang@buaa.edu.cn
  • Received Date: 29 Jun 2022
  • Accepted Date: 22 Jul 2022
  • Available Online: 07 Nov 2022
  • Publish Date: 03 Nov 2022
  • The overall design concept of the servo pressure and friction test platform for aluminum alloy sheets under heating circumstances was designed with the aim of meeting the need for friction testing of aluminum alloy sheet stamping. A small-load high-precision multi-functional friction testing machine system suitable for aluminum alloy sheet forming was developed. The system consists of a mechanical system, a heating system and a control system. The mechanical system realizes the movement support of the upper tool and chuck. The heating system realizes the separate heating of tools and specimens. In the servo control mode, combined with the external force sensor and the grating ruler, the force and displacement control double closed loop system is realized, which realizes the high precision and stability control of the specimen pressure and the tool gap. Finally, the orthogonal experiment was designed to explore the influence of different factors on the friction of aluminum alloy blank. The results show that the friction tester has stable performance and good repeatability. The important order of factors affecting friction coefficient is tool temperature, pressure, speed, and lubricant. The lower the temperature, the greater the pressure, the faster the speed, and the smaller the friction coefficient. The same type of lubricant has less influence on the coefficient of friction. The tendency of the coefficient of friction decreasing decreases with increasing pressure and eventually becomes more steady.

     

  • loading
  • [1]
    王凯, 何勇灵, 孟广威. 客车铝合金车架设计与典型工况分析[J]. 北京航空航天大学学报, 2018, 44(8): 1780-1786.

    WANG K, HE Y L, MENG G W. Design and analysis of an aluminum alloy bus frame under typical conditions[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(8): 1780-1786(in Chinese).
    [2]
    尹尚豹. 5754铝合金板热成形性能研究及应用[D]. 武汉: 华中科技大学, 2016: 1-3.

    YIN S B. Investigation and application of thermal formability of 5754 aluminum alloy sheet[D]. Wuhan: Huazhong University of Science and Technology, 2016: 1-3(in Chinese).
    [3]
    居龙. 5000系铝合金汽车板成形性能研究[D]. 北京: 北京科技大学, 2015: 40-42.

    JU L. Investigations for formability of 5000 series aluminum alloy sheets for automotive application[D]. Beijing: University of Science and Technology Beijing, 2015: 40-42(in Chinese).
    [4]
    BONG H J, LEEM D, KIM J H, et al. Practical determination of friction coefficient of Al 3003 for forming of backward extruded part using simple tip test and inverse finite element analysis[J]. Metals and Materials International, 2016, 22(3): 356-363. doi: 10.1007/s12540-015-5158-3
    [5]
    DOHDA K, BOHER C, REZAI-ARIA F, et al. Tribology in metal forming at elevated temperatures[J]. Friction, 2015, 3(1): 1-27. doi: 10.1007/s40544-015-0077-3
    [6]
    罗红宇, 李东升, 吕晓东, 等. 拉延筋/摩擦试验机测控系统设计与实践[J]. 塑性工程学报, 2004, 11(5): 33-36.

    LUO H Y, LI D S, LU X D, et al. Practice & design on measure and control system of drawbead/friction simulator[J]. Journal of Plasticity Engineering, 2004, 11(5): 33-36 (in Chinese).
    [7]
    王亮, 李东升, 罗红宇. 板材成形拉延摩擦试验机系统设计与实践[J]. 塑性工程学报, 2009, 16(6): 107-112. doi: 10.3969/j.issn.1007-2012.2009.06.022

    WANG L, LI D S, LUO H Y. Design and application of drawing-friction testing system used in sheet metal forming[J]. Journal of Plasticity Engineering, 2009, 16(6): 107-112 (in Chinese). doi: 10.3969/j.issn.1007-2012.2009.06.022
    [8]
    张建忠, 汪久根, 马家驹, 等. 微载荷含油轴承摩擦性能研究 Ⅱ. 摩擦试验分析[J]. 摩擦学学报, 2006, 26(5): 472-477.

    ZHANG J Z, WANG J G, MA J J, et al. Tribological characteristics of porous bearings under microload Ⅱ. Experimental study of friction[J]. Tribology, 2006, 26(5): 472-477 (in Chinese).
    [9]
    MARZOUKI M, KOWANDY C, RICHARD C. Experimental simulation of tool/product interface during hot drawing[J]. Wear, 2007, 262(3-4): 235-241. doi: 10.1016/j.wear.2006.05.017
    [10]
    CAO J, ZHOU R, WANG Q, et al. Strip-on-cylinder test apparatus for die wear characterization[J]. CIRP Annals, 2009, 58(1): 251-254.
    [11]
    YANAGIDA A, KURIHARA T, AZUSHIMA A. Development of tribo-simulator for hot stamping[J]. Journal of Materials Processing Technology, 2010, 210(3): 456-460.
    [12]
    TIAN X W, ZHANG Y S, WANG Z, et al. Design of a tribo-simulator for the high strength steel friction and wear investigation in hot stamping[J]. Advanced Materials Research, 2011, 421: 147-150. doi: 10.4028/www.scientific.net/AMR.421.147
    [13]
    张逸青. 重载荷往复式摩擦磨损试验机[J]. 轴承, 2016, 435(2): 53-56.

    ZHANG Y Q. Heavy load reciprocating friction and wear tester[J]. Bearing, 2016, 435(2): 53-56(in Chinese).
    [14]
    Interlaken Technology Company. Draw bead simulator[EB/OL]. (2022-03-28 ) [2022-06-01].https://interlaken.com/docs/DBS.pdf.
    [15]
    雷玉兰, 韩光超, 盛超杰, 等. 10 kN超声辅助塑性成形压力机设计与试验[J]. 北京航空航天大学学报, 2019, 45(8): 1622-1629.

    LEI Y L, HAN G C, SHENG C J, et al. Design of 10 kN ultrasonic-assisted plastic forming press machine and experiment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(8): 1622-1629 (in Chinese).
    [16]
    张春波, 周军, 梁武, 等. 位置控制模式及力控制模式交互作用的轴向摩擦焊接装置以及摩擦焊接工艺: CN109623134A[P]. 2019-04-16.

    ZHANG C B, ZHOU J, LIANG W, et al. Position control mode and force control mode interaction axial friction welding device and friction welding technology: CN109623134A[P]. 2019-04-16 (in Chinese).
    [17]
    SHI Z, WANG L, MOHAMED M, et al. A new design of friction test rig and determination of friction coefficient when warm forming an aluminium alloy[J]. Procedia Engineering, 2017, 207: 2274-2279. doi: 10.1016/j.proeng.2017.10.994
    [18]
    BAY N, OLSSON D D, ANDREASEN J L. Lubricant test methods for sheet metal forming[J]. Tribology International, 2008, 41(9): 844-853.
    [19]
    LI M, KLAMECKI B E, WEINMANN K J. SN-Gage and instrurnented pin: To measure shear and normal tool forces in sheet metal foming[J]. Transactions of Namrusme, 1992, 20: 103-109.
    [20]
    SHI M F, MEULEMAN D J. An evaluation of interface friction in different forming models for coated steel sheets[C]//Proceedings of the SAE Technical Paper Series. Warrendale: SAE International, 1992: 135-142.
    [21]
    SANCHEZ L R. Characterisation of a measurement system for reproducible friction testing on sheet metal under plane strain[J]. Tribology International, 1999, 20: 575-586.
    [22]
    TRZEPIECIŃSKI T, LEMU H G. Frictional conditions of AA5251 aluminium alloy sheets using drawbead simulator tests and numerical methods[J]. Strojniški Vestnik – Journal of Mechanical Engineering, 2014, 60(1): 51-60. doi: 10.5545/sv-jme.2013.1310
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(29)  / Tables(7)

    Article Metrics

    Article views(120) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return