Volume 50 Issue 6
Jun.  2024
Turn off MathJax
Article Contents
ZHU C C,TANG Z L,ZHAO X,et al. Multi-objective hybrid algorithm based on gradient search and evolution mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1940-1951 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0544
Citation: ZHU C C,TANG Z L,ZHAO X,et al. Multi-objective hybrid algorithm based on gradient search and evolution mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1940-1951 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0544

Multi-objective hybrid algorithm based on gradient search and evolution mechanism

doi: 10.13700/j.bh.1001-5965.2022.0544
Funds:  National Natural Science Foundation of China (12032011)
More Information
  • Corresponding author: E-mail:tangzhili@nuaa.edu.cn
  • Received Date: 29 Jun 2022
  • Accepted Date: 05 Nov 2022
  • Available Online: 25 Nov 2022
  • Publish Date: 22 Nov 2022
  • Because of its strong global exploration ability, the current multi-objective evolutionary algorithm (MOEA) has received a lot of attention. However, its local search ability close to the optimal value is relatively weak, and for optimization problems involving large-scale decision variables, MOEA requires a very large number of populations and iterations, which results in a low optimization efficiency. Gradient-based optimization algorithms can overcome these problems well, but they are difficult to be applied to multi-objective problems (MOPs). Therefore, this paper introduced a random weight function on the basis of a weighted average gradient, developed a multi-objective gradient operator, and combined it with a non-dominated sorting genetic algorithm-Ⅲ (NSGA- Ⅲ) based on reference points to develop multi-objective optimization algorithm (MOGBA) and multi-objective Hybrid Evolutionary algorithm (HMOEA). The latter greatly enhances the local search capability while retaining the good global exploration capability of NSGA-Ⅲ. Experiments with numbers demonstrate that HMOEA can effectively capture a wide range of Pareto forms, and that it is 5–10 times more efficient than standard multi-objective algorithms. And further, HMOEA is applied to the multi-objective aerodynamic optimization problem of the RAE2822 airfoil, and the ideal Pareto front is obtained, indicating that HMOEA is an efficient optimization algorithm with potential applications in aerodynamic optimization design.

     

  • loading
  • [1]
    刘加会. 无导数优化的直接搜索算法研究[D]. 西安: 西安电子科技大学, 2017: 5-14.

    LIU J H. Research on direct search algorithm for derivative-free optimization[D]. Xi’an: Xidian University, 2017: 5-14 (in Chinese) .
    [2]
    常永虎, 李虎阳. 基于梯度的优化算法研究[J]. 现代计算机, 2019(17): 3-8. doi: 10.3969/j.issn.1007-1423.2019.17.001

    CHANG Y H, LI H Y. Comparison of gradient based optimization algorithms[J]. Modern Computer, 2019(17): 3-8 (in Chinese). doi: 10.3969/j.issn.1007-1423.2019.17.001
    [3]
    王向慧, 连志春, 徐志英, 等. 基于Pareto最优概念的多目标进化算法研究[J]. 计算机工程与应用, 2008, 44(27): 58-61. doi: 10.3778/j.issn.1002-8331.2008.27.019

    WANG X H, LIAN Z C, XU Z Y, et al. Research on Pareto optimal-based multiobjective evolutionary algorithms[J]. Computer Engineering and Applications, 2008, 44(27): 58-61 (in Chinese). doi: 10.3778/j.issn.1002-8331.2008.27.019
    [4]
    MIRJALILI S. Genetic algorithm[C]// Evolutionary Algorithms and Neural Networks. Berlin: Springer, 2019: 43-55.
    [5]
    JAMESON A. Aerodynamic design via control theory[J]. Journal of Scientific Computing, 1988, 3(3): 233-260. doi: 10.1007/BF01061285
    [6]
    AHMADIANFAR I, BOZORG-HADDAD O, CHU X F. Gradient-based optimizer: A new metaheuristic optimization algorithm[J]. Information Sciences, 2020, 540: 131-159. doi: 10.1016/j.ins.2020.06.037
    [7]
    CHIOU J P, WANG F S. A hybrid method of differential evolution with application to optimal control problems of a bioprocess system[C]// Proceedings of the IEEE International Conference on Evolutionary Computation Proceedings. Piscataway: IEEE Press, 1998: 627-632.
    [8]
    TANG Z, HU X, PÉRIAUX J. Multi-level hybridized optimization methods coupling local search deterministic and global search evolutionary algorithms[J]. Archives of Computational Methods in Engineering, 2020, 27(3): 939-975. doi: 10.1007/s11831-019-09336-w
    [9]
    DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. doi: 10.1109/4235.996017
    [10]
    DEB K, JAIN H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(4): 577-601.
    [11]
    JAIN H, DEB K. An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part Ⅱ: Handling constraints and extending to an adaptive approach[J]. IEEE Transactions on Evolutionary Computation, 2013, 18(4): 602-622.
    [12]
    SIERRA M R, COELLO COELLO C A. Improving PSO-based multi-objective optimization using crowding, mutation and ε-dominance[C]//International Conference on Evolutionary Multi-Criterion Optimization. Berlin: Springer, 2005: 505-519.
    [13]
    ZHANG Q F, LI H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712-731. doi: 10.1109/TEVC.2007.892759
    [14]
    CHENG R, JIN Y C, OLHOFER M, et al. A reference vector guided evolutionary algorithm for many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2016, 20(5): 773-791. doi: 10.1109/TEVC.2016.2519378
    [15]
    LIU D C, NOCEDAL J. On the limited memory BFGS method for large scale optimization[J]. Mathematical Programming, 1989, 45(1): 503-528.
    [16]
    BROYDEN C G. The convergence of a class of double-rank minimization algorithms[J]. IMA Journal of Applied Mathematics, 1970, 6(3): 222-231. doi: 10.1093/imamat/6.3.222
    [17]
    FLETCHER R. A new approach to variable metric algorithms[J]. The Computer Journal, 1970, 13(3): 317-322. doi: 10.1093/comjnl/13.3.317
    [18]
    GOLDFARB D. A family of variable-metric methods derived by variational means[J]. Mathematics of Computation, 1970, 24(109): 23-26. doi: 10.1090/S0025-5718-1970-0258249-6
    [19]
    SHANNO D F. Conditioning of quasi-Newton methods for function minimization[J]. Mathematics of Computation, 1970, 24(111): 647-656. doi: 10.1090/S0025-5718-1970-0274029-X
    [20]
    LYU Z, XU Z, MARTINS J. Benchmarking optimization algorithms for wing aerodynamic design optimization[C]//Proceedings of the 8th International Conference on Computational Fluid Dynamics. Oxford : International Journal of Computational Fluid Dynamics, 2014, 1-18.
    [21]
    KENWAY G K W, MADER C A, HE P, et al. Effective adjoint approaches for computational fluid dynamics[J]. Progress in Aerospace Sciences, 2019, 110: 100542. doi: 10.1016/j.paerosci.2019.05.002
    [22]
    HUA Y C, JIN Y C, HAO K R. A clustering-based adaptive evolutionary algorithm for multiobjective optimization with irregular Pareto fronts[J]. IEEE Transactions on Cybernetics, 2019, 49(7): 2758-2770. doi: 10.1109/TCYB.2018.2834466
    [23]
    COOK P H, MCDONALD M A, FIRMIN M C P. Aerofoil RAE 2822:Pressure distributions, and boundary layer and wake measurements: ADA073982[R]. Experimental Data Base for Computer Program Assessment: AGARD Report AR 138, 1979: A6.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(8)

    Article Metrics

    Article views(191) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return