Volume 50 Issue 6
Jun.  2024
Turn off MathJax
Article Contents
LI Y J,ZHOU J H,ZHANG X J. Dynamic modeling and parameter identification of balloon-borne gondola azimuth channel[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):2001-2008 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0547
Citation: LI Y J,ZHOU J H,ZHANG X J. Dynamic modeling and parameter identification of balloon-borne gondola azimuth channel[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):2001-2008 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0547

Dynamic modeling and parameter identification of balloon-borne gondola azimuth channel

doi: 10.13700/j.bh.1001-5965.2022.0547
Funds:  National Natural Science Foundation of China (61733017); Major Engineering Projects of Chinese Academy of Sciences (E2K62002); Strategic Priority Research Program of the Chinese Academy of Sciences (KJSP2020020201)
More Information
  • Corresponding author: E-mail:zhoufma@aoe.ac.cn
  • Received Date: 29 Jun 2022
  • Accepted Date: 25 Sep 2022
  • Available Online: 14 Nov 2022
  • Publish Date: 08 Nov 2022
  • A balloon borne telescope is one of the space observation methods by carrying a telescope with a high-altitude balloon flying in the stratosphere. In order to slew and orient the telescope to the intended targets during the observation, an attitude control system is needed to provide high-resolution images. The attitude control system consists of azimuth and elevation channels, respectively. In this paper, the dynamic of balloon borne gondola and control law are discussed, Lagrange equation is introduced to modelling the kinematic characteristics of the azimuth channel. A minimum recursive doubled based parameter identification algorithm is developed to identify the torsional stiffness and damping coefficients in the azimuth channel offline. The results of simulations and experiments demonstrate that, in contrast to the conventional stability analysis method, the proposed method further reveals the azimuth channel motion characteristics of balloon-borne gondolas and serves as a valuable guide for the design and optimization of the platform's attitude control system.

     

  • loading
  • [1]
    黄宛宁, 李智斌, 张钊, 等. 2019年临近空间科学技术热点回眸[J]. 科技导报, 2020, 38(1): 38-46.

    HUANG W N, LI Z B, ZHANG Z, et al. Summary of hot spots of near space vehicles in 2019[J]. Science & Technology Review, 2020, 38(1): 38-46(in Chinese).
    [2]
    黄宛宁, 张晓军, 李智斌, 等. 临近空间科学技术的发展现状及应用前景[J]. 科技导报, 2019, 37(21): 46-62.

    HUANG W N, ZHANG X J, L Z B, et al. Development status and application prospect of near space science and technology[J]. Science & Technology Review, 2019, 37(21): 46-62 (in Chinese).
    [3]
    马俊, 朱猛, 王才喜, 等. 临近空间光电探测技术与发展展望[J]. 空天技术, 2022(2): 85-96.

    MA J, ZHU M, WANG C X, et al. Technology and development prospect of electro-optical detection in near space[J]. Aerospace Technology, 2022(2): 85-96 (in Chinese).
    [4]
    王鸿辉, 袁朝辉, 何长安. 球载吊篮方位控制综合解耦器设计[C]// 第三十二届中国控制会议. 西安:中国自动化学会, 2013: 320-324.

    WANG H H, YUAN Z H, HE C A. Design of azimuth control system for ball borne basket[C]// Proceedings of the 32nd China Control Conference. Xi’an: Chinese Association of Automation, 2013: 320-324.
    [5]
    张晶敏. 绳索平流层飞行器动力学建模与仿真[D]. 南京: 南京航空航天大学, 2007.

    ZHANG J M. Dynamics modeling and simulation of tethered stratospheric aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007 (in Chinese).
    [6]
    矢岛信之, 小锻治繁, 桥野贤. 气球搭载望远镜方向控制系统研究[J]. 空间研究进展,1981,1(11): 127-133.

    NISHIMURA J, YAJIMA N, KOKAJI S, et al. A control system for a balloon-borne telescope[J]. Advances in Space Research, 1981, 1(11): 127-133.
    [7]
    叶祥明. 大型球载望远镜高精度姿态控制及指向技术研究[D]. 北京: 中国科学院国家天文台, 中国科学院北京天文台, 1999.

    YE X M. Research on high precision attitude control and pointing technology of large spherical telescope[D]. Beijing: National Astronomical Observatories, Chinese Academy of Sciences, 1999 (in Chinese).
    [8]
    刘奉昌, 李威, 赵伟国, 等. 临近空间球载望远镜概述及发展趋势[J]. 激光与红外, 2019, 49(11): 1275-1281.

    LIU F C, LI W, ZHAO W G, et al. Overview and developing trends of balloon-borne telescopes in near-space[J]. Laser & Infrared, 2019, 49(11): 1275-1281 (in Chinese).
    [9]
    李家乐, 王正平. 基于Lagrange方法的单旋翼飞行器动力学建模[J]. 飞行力学, 2016, 34(4): 15-18.

    LI J L, WANG Z P. Dynamics modeling for monowing rotorcraft using Lagrange method[J]. Flight Dynamics, 2016, 34(4): 15-18 (in Chinese).
    [10]
    ESTES A, MAJJI M. Generalization of Lagrange’s equations for constrained hybrid-coordinate systems[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(3): 710-713. doi: 10.2514/1.G000450
    [11]
    吴翰, 王正平, 周洲, 等. 拉格朗日方程的菱形翼布局无人机建模[J]. 空军工程大学学报(自然科学版), 2019, 20(5): 8-15.

    WU H, WANG Z P, ZHOU Z, et al. A modeling of diamond jointed-wing configuration UAV based on Lagrange’s equation[J]. Journal of Air Force Engineering University (Natural Science Edition), 2019, 20(5): 8-15 (in Chinese).
    [12]
    廖俊, 袁俊杰, 蒋祎, 等. 高空零压气球上升过程的运动特性研究[J]. 航天返回与遥感, 2019, 40(1): 11-19.

    LIAO J, YUAN J J, JIANG Y, et al. Motion characteristics of zero-pressure balloon in ascending process[J]. Spacecraft Recovery & Remote Sensing, 2019, 40(1): 11-19 (in Chinese).
    [13]
    王鸿辉. 球载吊篮平台设计技术及自主姿态控制方法研究[D]. 西安: 西北工业大学, 2014.

    WANG H H. Studies on design technology and autonomous control method of balloon-borne gondola platform[D]. Xi’an: Northwestern Polytechnical University, 2014 (in Chinese).
    [14]
    代小林, 宋世杰, 宫大为. 六自由度并联机构模态空间解耦控制[J]. 哈尔滨工程大学学报, 2020, 41(8): 1237-1243.

    DAI X L, SONG S J, GONG D W. Modal space decoupled control of six-degree-of-freedom parallel mechanisms[J]. Journal of Harbin Engineering University, 2020, 41(8): 1237-1243 (in Chinese).
    [15]
    张大伟. 基于DSP的高空气球吊篮方位控制[D]. 北京: 中国科学院大学, 2016.

    ZHANG D W. Azimuth control of high altitude balloon basket based on DSP[D]. Beijing: University of Chinese Academy of Sciences, 2016 (in Chinese).
    [16]
    LIN X W, LAN W Y. An analysis on the airship dynamic model linearization[J]. Journal of Control Theory and Applications, 2013, 11(3): 495-503. doi: 10.1007/s11768-013-2009-y
    [17]
    胡广深, 陆泽琦, 陈立群. 非线性阻尼非线性刚度隔振系统参数识别[J]. 振动与冲击, 2018, 37(9): 68-73.

    HU G S, LU Z Q, CHEN L Q. Parametric recognition for a vibration isolation system with nonlinear stiffness and nonlinear damping[J]. Journal of Vibration and Shock, 2018, 37(9): 68-73 (in Chinese).
    [18]
    卢晓东, 费庆国, 韩晓林. 基于时间响应函数的结构阻尼识别方法比较[J]. 力学与实践, 2011, 33(2): 58-61.

    LU X D, FEI Q G, HAN X L. Evaluation and application of damping identification methods based on time response functions[J]. Mechanics in Engineering, 2011, 33(2): 58-61 (in Chinese).
    [19]
    张虎, 李正熙, 童朝南. 基于递推最小二乘算法的感应电动机参数离线辨识[J]. 中国电机工程学报, 2011, 31(18): 79-86.

    ZHANG H, LI Z X, TONG C N. Off-line parameter identification of induction motor based on recursive least-squares algorithm[J]. Proceedings of the CSEE, 2011, 31(18): 79-86 (in Chinese).
    [20]
    荀倩, 王培良, 李祖欣, 等. 基于递推最小二乘法的永磁伺服系统参数辨识[J]. 电工技术学报, 2016, 31(17): 161-169. doi: 10.3969/j.issn.1000-6753.2016.17.018

    XUN Q, WANG P L, LI Z X, et al. PMSM parameters identification based on recursive least square method[J]. Transactions of China Electrotechnical Society, 2016, 31(17): 161-169 (in Chinese). doi: 10.3969/j.issn.1000-6753.2016.17.018
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views(126) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return