Volume 50 Issue 6
Jun.  2024
Turn off MathJax
Article Contents
MAO Q H,WANG Y G,NIU X H. Improved mayfly optimization algorithm based on anti-attraction velocity update mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1770-1783 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0550
Citation: MAO Q H,WANG Y G,NIU X H. Improved mayfly optimization algorithm based on anti-attraction velocity update mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1770-1783 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0550

Improved mayfly optimization algorithm based on anti-attraction velocity update mechanism

doi: 10.13700/j.bh.1001-5965.2022.0550
Funds:  National Natural Science Foundation of China (71704151)
More Information
  • Corresponding author: E-mail:maoqh@ysu.edu.cn
  • Received Date: 29 Jun 2022
  • Accepted Date: 15 Aug 2022
  • Available Online: 23 Sep 2022
  • Publish Date: 16 Sep 2022
  • To address the problem that the mayfly optimization algorithm (MA) has a slow convergence speed in the early stage and not high accuracy in the later stage of the search, a modified mayfly optimization algorithm (MMOA) based on the anti-attraction speed update mechanism is proposed. Firstly, an improved Tent chaotic sequence is used to initialize the mayfly population, which makes the mayfly distribution more uniform and improves the diversity of the population. Secondly, in order to enhance the algorithm’s convergence performance, an anti-attraction speed update mechanism is presented to direct the mayfly speed update depending on the properties of the MA. Finally, the dimension-by-dimension centroid opposition-based learning strategy is performed on the global best mayfly, which reduces the interference between dimensions, helps the algorithm jump out of the local optimum and accelerates the convergence. Based on a comparison of simulation experiments using 12 conventional test functions and a few CEC2017 test functions, the findings indicate that MMOA clearly outperforms algorithms such as grey wolf optimizer (GWO) and MA in terms of convergence speed, stability, and optimization accuracy.

     

  • loading
  • [1]
    MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61.
    [2]
    MIRJALILI S, GANDOMI A H, MIRJALILI S Z, et al. Salp swarm algorithm[J]. Advances in Engineering Software, 2017, 114: 163-191. doi: 10.1016/j.advengsoft.2017.07.002
    [3]
    ARORA S, SINGH S. Butterfly optimization algorithm: A novel approach for global optimization[J]. Soft Computing, 2019, 23(3): 715-734. doi: 10.1007/s00500-018-3102-4
    [4]
    DHIMAN G, KUMAR V. Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems[J]. Knowledge-Based Systems, 2019, 165: 169-196. doi: 10.1016/j.knosys.2018.11.024
    [5]
    FARAMARZI A, HEIDARINEJAD M, STEPHENS B, et al. Equilibrium optimizer: A novel optimization algorithm[J]. Knowledge-Based Systems, 2020, 191: 105190. doi: 10.1016/j.knosys.2019.105190
    [6]
    ZERVOUDAKIS K, TSAFARAKIS S. A mayfly optimization algorithm[J]. Computers & Industrial Engineering, 2020, 145: 106559.
    [7]
    王尔申, 贾超颖, 曲萍萍, 等. 基于混沌粒子群优化的北斗/GPS组合导航选星算法[J]. 北京航空航天大学学报, 2019, 45(2): 259-265.

    WANG E S, JIA C Y, QU P P, et al. BDS /GPS integrated navigation satellite selection algorithm based on chaos particle swarm optimization[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(2): 259-265(in Chinese).
    [8]
    王志华, 王浩帆, 程漫漫. 基于启发式遗传算法的模糊测试样本集优化方案[J]. 北京航空航天大学学报, 2022, 48(2): 217-224.

    WANG Z H, WANG H F, CHENG M M. Fuzzing testing sample set optimization scheme based on heuristic genetic algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(2): 217-224(in Chinese).
    [9]
    刘景森, 毛艺楠, 李煜. 具有振荡约束的自然选择萤火虫优化算法[J]. 控制与决策, 2020, 35(10): 2363-2371.

    LIU J S, MAO Y N, LI Y. Natural selection firefly optimization algorithm with oscillation and constraint[J]. Control and Decision, 2020, 35(10): 2363-2371(in Chinese).
    [10]
    ABD ELAZIZ M, SENTHILRAJA S, ZAYED M E, et al. A new random vector functional link integrated with mayfly optimization algorithm for performance prediction of solar photovoltaic thermal collector combined with electrolytic hydrogen production system[J]. Applied Thermal Engineering, 2021, 193: 117055.
    [11]
    HU A H, DENG Z L, YANG H, et al. An optimal geometry configuration algorithm of hybrid semi-passive location system based on mayfly optimization algorithm[J]. Sensors, 2021, 21(22): 7484. doi: 10.3390/s21227484
    [12]
    SHAHEEN M A M, HASANIEN H M, EL MOURSI M S, et al. Precise modeling of PEM fuel cell using improved chaotic mayfly optimization algorithm[J]. International Journal of Energy Research, 2021, 45(13): 18754-18769.
    [13]
    LIU Y H, CHAI Y, LIU B W, et al. Bearing fault diagnosis based on energy spectrum statistics and modified mayfly optimization algorithm[J]. Sensors, 2021, 21(6): 2245. doi: 10.3390/s21062245
    [14]
    李浩, 杨海潇, 张兰, 等. 改进离散蜉蝣算法的多目标动态网络社区发现[J]. 计算机科学与探索, 2023, 17(4): 942-952.

    LI H, YANG H X, ZHAMG L, et al. Improved discrete mayfly algorithm for multi-objective dynamic network community detection[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 942-952(in Chinese).
    [15]
    邵瑞凝, 杨博, 束洪春, 等. 基于改进蜉蝣算法的光伏阵列最优重构方法[J]. 电力系统自动化, 2022, 46(11): 142-150.

    SHAO R N, YANG B, SHU H C, et al. Improved mayfly algorithm for optimal PV array reconfiguration[J]. Automation of Electric Power Systems, 2022, 46(11): 142-150(in Chinese).
    [16]
    张娜, 赵泽丹, 包晓安, 等. 基于改进的Tent混沌万有力搜索算法[J]. 控制与决策, 2020, 35(4): 893-900.

    ZHANG N, ZHAO Z D, BAO X A, et al. Gravitational search algorithm based on improved Tent chaos[J]. Control and Decision, 2020, 35(4): 893-900(in Chinese).
    [17]
    罗强, 季伟东, 徐浩天, 等. 一种最优粒子逐维变异的粒子群优化算法[J]. 小型微型计算机系统, 2020, 41(2): 259-263.

    LUO Q, JI W D, XU H T, et al. Particle swarm optimization with global best particle dimension-by-dimension mutation[J]. Journal of Chinese Computer Systems, 2020, 41(2): 259-263(in Chinese).
    [18]
    王义, 张达敏, 邹诚诚. 增强全局搜索和自适应蜉蝣算法[J]. 哈尔滨工业大学学报, 2022, 54(11): 137-150.

    WANG Y, ZHANG D M, ZOU C C. Enhance global search and adaptive mayfly algorithm[J]. Journal of Harbin Institute of Technology, 2022, 54(11): 137-150(in Chinese).
    [19]
    ABDEL-BASSET M, MOHAMED R, CHAKRABORTTY R K, et al. An efficient binary slime mould algorithm integrated with a novel attacking-feeding strategy for feature selection[J]. Computers & Industrial Engineering, 2021, 153(11): 107078.
    [20]
    肖子雅, 刘升. 精英反向黄金正弦鲸鱼算法及其工程优化研究[J]. 电子学报, 2019, 47(10): 2177-2186. doi: 10.3969/j.issn.0372-2112.2019.10.020

    XIAO Z Y, LIU S. Study on elite opposition-based golden-sine whale optimization algorithm and its application of project optimization[J]. Acta Electronica Sinica, 2019, 47(10): 2177-2186(in Chinese). doi: 10.3969/j.issn.0372-2112.2019.10.020
    [21]
    NADIMI-SHAHRAKI M H, TAGHIAN S, MIRJALILI S. An improved grey wolf optimizer for solving engineering problems[J]. Expert Systems with Applications, 2021, 166: 113917. doi: 10.1016/j.eswa.2020.113917
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(8)

    Article Metrics

    Article views(145) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return