Volume 50 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
DUAN J Z,WANG C J. Sensitivity encoding reconstruction algorithm based on multi-category dictionary learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2123-2132 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0571
Citation: DUAN J Z,WANG C J. Sensitivity encoding reconstruction algorithm based on multi-category dictionary learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2123-2132 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0571

Sensitivity encoding reconstruction algorithm based on multi-category dictionary learning

doi: 10.13700/j.bh.1001-5965.2022.0571
Funds:  National Natural Science Foundation of China (61861023)
More Information
  • Corresponding author: E-mail:duanjz@kust.edu.cn
  • Received Date: 30 Jun 2022
  • Accepted Date: 15 Aug 2022
  • Available Online: 30 Sep 2022
  • Publish Date: 28 Sep 2022
  • The sensitivity encoding (SENSE) method explicitly utilizes sensitivity information from multiple receiving coils to reduce scan time. The images reconstructed using the SENSE model have a portion of blurring artifacts that are not conducive to medical diagnosis. We propose a sensitivity coding reconstruction approach based on multi-classification dictionary learning to minimize overlap artifacts and enhance the quality of parallel magnetic resonance imaging by integrating fast dictionary learning on classed patches into the SENSE model. In order to obtain picture reconstructions using alternating direction method of multipliers, the algorithm first classifies the image blocks and then trains multiple dictionaries of various classes in each category. The results on the human brain and knee data show that the algorithm improves the average signal-to-noise ratio by 1.53 dB, 1.22 dB and 1.05 dB over the TV-SENSE, TV-LORAKS-SENSE and LpTV-SENSE algorithms, respectively. The reconstructed image is in high agreement with the reference image, and the image detail part and edge contour information are kept intact.

     

  • loading
  • [1]
    LUSTIG M, DONOHO D, PAULY J M. Sparse MRI: The application of compressed sensing for rapid MR imaging[J]. Magnetic Resonance in Medicine, 2007, 58(6): 1182-1195. doi: 10.1002/mrm.21391
    [2]
    SONG L X, ZHANG J G, WANG Q. MRI reconstruction based on three regularizations: Total variation and two wavelets[J]. Biomedical Signal Processing and Control, 2016, 30: 64-69. doi: 10.1016/j.bspc.2016.06.003
    [3]
    WANG S S, XIA Y, LIU Q G, et al. Fenchel duality based dictionary learning for restoration of noisy images[J]. IEEE Transactions on Image Processing, 2013, 22(12): 5214-5225. doi: 10.1109/TIP.2013.2282900
    [4]
    ELAD M, AHARON M. Image denoising via sparse and redundant representations over learned dictionaries[J]. IEEE Transactions on Image Processing, 2006, 15(12): 3736-3745. doi: 10.1109/TIP.2006.881969
    [5]
    RAVISHANKAR S, BRESLER Y. MR image reconstruction from highly undersampled k-space data by dictionary learning[J]. IEEE Transactions on Medical Imaging, 2011, 30(5): 1028-1041. doi: 10.1109/TMI.2010.2090538
    [6]
    QU X B, GUO D, NING B D, et al. Undersampled MRI reconstruction with patch-based directional wavelets[J]. Magnetic Resonance Imaging, 2012, 30(7): 964-977. doi: 10.1016/j.mri.2012.02.019
    [7]
    ZHAN Z F, CAI J F, GUO D, et al. Fast multiclass dictionaries learning with geometrical directions in MRI reconstruction[J]. IEEE Transactions on Bio-Medical Engineering, 2016, 63(9): 1850-1861. doi: 10.1109/TBME.2015.2503756
    [8]
    FRANCAVILLA M A, LEFKIMMIATIS S, VILLENA J F, et al. Maxwell parallel imaging[J]. Magnetic Resonance in Medicine, 2021, 86(3): 1573-1585. doi: 10.1002/mrm.28718
    [9]
    蒋明峰, 朱礼涛, 汪亚明, 等. 结合非线性GRAPPA与SENSE的并行磁共振成像[J]. 浙江大学学报(工学版), 2014, 48(10): 1865-1870.

    JIANG M F, ZHU L T, WANG Y M, et al. Parallel MRI based on combination of nonlinear GRAPPA and SENSE[J]. Journal of Zhejiang University (Engineering Science), 2014, 48(10): 1865-1870 (in Chinese).
    [10]
    PRUESSMANN K P, WEIGER M, SCHEIDEGGER M B, et al. SENSE: Sensitivity encoding for fast MRI[J]. Magnetic Resonance in Medicine, 1999, 42(5): 952-962. doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
    [11]
    GRISWOLD M A, JAKOB P M, HEIDEMANN R M, et al. Generalized auto-calibrating partially parallel acquisitions (GRAPPA)[J]. Magnetic Resonance in Medicine, 2002, 47(6): 1202-1210. doi: 10.1002/mrm.10171
    [12]
    LUSTIG M, PAULY J M. SPIRiT: Iterative self-consistent parallel imaging reconstruction from arbitrary k-space[J]. Magnetic Resonance in Medicine, 2010, 64(2): 457-471. doi: 10.1002/mrm.22428
    [13]
    吴春俐, 朱学欢, 翟江南, 等. 基于快速分裂Bregman迭代的全变差正则化SENSE磁共振图像重建[J]. 东北大学学报(自然科学版), 2014, 35(1): 24-28.

    WU C L, ZHU X H, ZHAI J N, et al. Total variation regularized SENSE MRI reconstruction based on fast split Bregman iteration[J]. Journal of Northeastern University (Natural Science), 2014, 35(1): 24-28(in Chinese).
    [14]
    李建武, 康杨, 周金鹏. PF-FICOTA-SENSE: 一种 MRI 快速重构方法[J]. 自动化学报, 2020, 46(5): 897-908.

    LI J W, KANG Y, ZHOU J P. PF-FICOTA-SENSE: An MRI fast reconstruction method[J]. Acta Automatica Sinica, 2020, 46(5): 897-908(in Chinese).
    [15]
    RAMANI S, FESSLER J A. Parallel MR image reconstruction using augmented Lagrangian methods[J]. IEEE Transactions on Medical Imaging, 2011, 30(3): 694-706. doi: 10.1109/TMI.2010.2093536
    [16]
    KIM T H, SETSOMPOP K, HALDAR J P. LORAKS makes better SENSE: Phase-constrained partial Fourier SENSE reconstruction without phase calibration[J]. Magnetic Resonance in Medicine, 2017, 77(3): 1021-1035. doi: 10.1002/mrm.26182
    [17]
    鲍中文. 磁共振成像的稀疏重构算法研究[D]. 昆明: 昆明理工大学, 2020: 1-70.

    BAO Z W. Research on sparse reconstruction algorithm of magnetic resonance imaging[D]. Kunming: Kunming University of Science and Technology, 2020: 1-70(in Chinese) .
    [18]
    YANG J F, ZHANG Y, YIN W T. A fast alternating direction method for TVL1-L2 signal reconstruction from partial Fourier data[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 288-297. doi: 10.1109/JSTSP.2010.2042333
    [19]
    AFONSO M V, BIOUCAS-DIAS J M, FIGUEIREDO M A T. Fast image recovery using variable splitting and constrained optimization[J]. IEEE Transactions on Image Processing, 2010, 19(9): 2345-2356. doi: 10.1109/TIP.2010.2047910
    [20]
    SOUZA R, BENTO M, NOGOVITSYN N, et al. Dual-domain cascade of U-nets for multi-channel magnetic resonance image reconstruction[J]. Magnetic Resonance Imaging, 2020, 71: 140-153.
    [21]
    KNOLL F, ZBONTAR J, SRIRAM A, et al. FastMRI: A publicly available raw k-space and DICOM dataset of knee images for accelerated MR image reconstruction using machine learning[J]. Radiology Artificial Intelligence, 2020, 2(1): e190007.
    [22]
    SAWYER A M, LUSTIG M, ALLEY M, et al. Creation of fully sampled MR data repository for compressed sensing of the knee[C]//Proceedings of the SMRT Conference. Salt Lake City: SMRT, 2013.
    [23]
    HUANG J Z, ZHANG S T, METAXAS D. Efficient MR image reconstruction for compressed MR imaging[J]. Medical Image Analysis, 2011, 15(5): 670-679. doi: 10.1016/j.media.2011.06.001
    [24]
    CORRIVEAU P, WEBSTER A. VQEG evaluation of objective methods of video quality assessment[J]. SMPTE Journal, 1999, 108(9): 645-648. doi: 10.5594/J17594
    [25]
    WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. doi: 10.1109/TIP.2003.819861
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(6)

    Article Metrics

    Article views(490) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return