Volume 50 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
OUYANG C T,HUANG Z W,LIU Y J,et al. Parameter identification of solar cell model based on RCJAYA algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2133-2140 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0576
Citation: OUYANG C T,HUANG Z W,LIU Y J,et al. Parameter identification of solar cell model based on RCJAYA algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2133-2140 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0576

Parameter identification of solar cell model based on RCJAYA algorithm

doi: 10.13700/j.bh.1001-5965.2022.0576
Funds:  National Natural Science Foundation of China (61561024,62002046,62006106); Zhejiang Provincial Natural Science Foundation of China (LQ21F02005); Basic Public Welfare Research Program of Zhejiang Province (LGG18E050011)
More Information
  • Corresponding author: E-mail:993291500@qq.com
  • Received Date: 05 Jul 2022
  • Accepted Date: 03 Dec 2022
  • Available Online: 18 Jul 2024
  • Publish Date: 09 Jan 2023
  • A JAYA algorithm based on the ranking probability quantization mechanism and chaotic perturbation (RCJAYA) is proposed as a discrimination approach to increase the precision and accuracy of the intelligent optimization algorithm to detect solar cell parameters.The RCJAYA algorithm selects different ways to update individuals according to the ranking probability to balance the local and global search ability and maintain the population diversity; chaotic perturbation is applied to the optimal individuals to discover a better solution. The replacement strategy is used to update the stagnant individuals and improve the performance of the algorithm. When compared to the five algorithms such as JAYA, the root mean square error of the current of the single and double diodes of solar cells achieved by the RCJAYA algorithm is 9.8602×10−4 A and 9.8258×10−4 A, respectively. The results show that the RCJAYA algorithm has more advantages. The simulated current is calculated according to the identification results compared with the measured current, and the average error is 0.00084 A and 0.00082 A for single and double diodes, respectively, which indicates that the parameter values identified by RCJAYA are accurate and reliable.

     

  • loading
  • [1]
    ALSKAIF T, DEV S, VISSER L, et al. A systematic analysis of meteorological variables for PV output power estimation[J]. Renewable Energy, 2020, 153: 12-22. doi: 10.1016/j.renene.2020.01.150
    [2]
    ELKHOLY A, ABOU EL-ELA A A. Optimal parameters estimation and modelling of photovoltaic modules using analytical method[J]. Heliyon, 2019, 5(7): e02137. doi: 10.1016/j.heliyon.2019.e02137
    [3]
    孙以泽, 彭乐乐, 孟婥, 等. 基于Lambert W函数的太阳电池组件参数提取及优化[J]. 太阳能学报, 2014, 35(8): 1429-1434. doi: 10.3969/j.issn.0254-0096.2014.08.019

    SUN Y Z, PENG L L, MENG Z, et al. Parameters extraction and optimization for PV module based on Lambert W function[J]. Acta Energiae Solaris Sinica, 2014, 35(8): 1429-1434(in Chinese). doi: 10.3969/j.issn.0254-0096.2014.08.019
    [4]
    吴忠强, 于丹琦, 康晓华. 基于改进蚁狮优化算法的太阳电池模型参数辨识[J]. 太阳能学报, 2019, 40(12): 3435-3443.

    WU Z Q, YU D Q, KANG X H. Parameter identification of solar cell model based on improved ant lion algorithm[J]. Acta Energiae Solaris Sinica, 2019, 40(12): 3435-3443(in Chinese).
    [5]
    KUMARI P A, GEETHANJALI P. Adaptive genetic algorithm based multi-objective optimization for photovoltaic cell design parameter extraction[J]. Energy Procedia, 2017, 117: 432-441. doi: 10.1016/j.egypro.2017.05.165
    [6]
    CHOPDE A, MAGARE D, PATIL M, et al. Parameter extraction for dynamic PV thermal model using particle swarm optimization[J]. Applied Thermal Engineering, 2016, 100: 508-517. doi: 10.1016/j.applthermaleng.2016.01.164
    [7]
    BISWAS P P, SUGANTHAN P N, WU G H, et al. Parameter estimation of solar cells using datasheet information with the application of an adaptive differential evolution algorithm[J]. Renewable Energy, 2019, 132: 425-438. doi: 10.1016/j.renene.2018.07.152
    [8]
    简献忠, 翁志远, 王如志. CIJAYA算法在光伏组件参数辨识中的应用[J]. 太阳能学报, 2021, 42(11): 19-26.

    JIAN X Z, WENG Z Y, WANG R Z. CIJAYA algorithm for parameters identification of photovoltaic module model[J]. Acta Energiae Solaris Sinica, 2021, 42(11): 19-26(in Chinese).
    [9]
    RAO R. Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems[J]. International Journal of Industrial Engineering Computations, 2016, 7: 19-34.
    [10]
    曾一婕, 王龙, 黄超. 基于Jaya-DA算法的太阳电池模型参数辨识[J]. 太阳能学报, 2022, 43(2): 198-202.

    ZENG Y J, WANG L, HUANG C. Parameter identification of solar cell model based on Jaya-DA algorithm[J]. Acta Energiae Solaris Sinica, 2022, 43(2): 198-202(in Chinese).
    [11]
    ZHANG Y Y, MA M D, JIN Z G. Comprehensive learning Jaya algorithm for parameter extraction of photovoltaic models[J]. Energy, 2020, 211: 118644. doi: 10.1016/j.energy.2020.118644
    [12]
    JIAN X Z, WENG Z Y. A logistic chaotic JAYA algorithm for parameters identification of photovoltaic cell and module models[J]. Optik, 2020, 203: 164041. doi: 10.1016/j.ijleo.2019.164041
    [13]
    YANG X, GONG W Y. Opposition-based JAYA with population reduction for parameter estimation of photovoltaic solar cells and modules[J]. Applied Soft Computing, 2021, 104: 107218. doi: 10.1016/j.asoc.2021.107218
    [14]
    YU K J, LIANG J J, QU B Y, et al. Parameters identification of photovoltaic models using an improved JAYA optimization algorithm[J]. Energy Conversion and Management, 2017, 150: 742-753. doi: 10.1016/j.enconman.2017.08.063
    [15]
    CHEN X, YU K J, DU W L, et al. Parameters identification of solar cell models using generalized oppositional teaching learning based optimization[J]. Energy, 2016, 99: 170-180. doi: 10.1016/j.energy.2016.01.052
    [16]
    NIU Q, ZHANG H Y, LI K. An improved TLBO with elite strategy for parameters identification of PEM fuel cell and solar cell models[J]. International Journal of Hydrogen Energy, 2014, 39(8): 3837-3854. doi: 10.1016/j.ijhydene.2013.12.110
    [17]
    YU K J, QU B Y, YUE C T, et al. A performance-guided JAYA algorithm for parameters identification of photovoltaic cell and module[J]. Applied Energy, 2019, 237: 241-257. doi: 10.1016/j.apenergy.2019.01.008
    [18]
    YU K J, WANG X, WANG Z L. An improved teaching-learning-based optimization algorithm for numerical and engineering optimization problems[J]. Journal of Intelligent Manufacturing, 2016, 27(4): 831-843. doi: 10.1007/s10845-014-0918-3
    [19]
    WEI J M, NIU H Y. A ranking-based adaptive cuckoo search algorithm for unconstrained optimization[J]. Expert Systems with Applications, 2022, 204: 117428. doi: 10.1016/j.eswa.2022.117428
    [20]
    EASWARAKHANTHAN T, BOTTIN J, BOUHOUCH I, et al. Nonlinear minimization algorithm for determining the solar cell parameters with microcomputers[J]. International Journal of Solar Energy, 1986, 4(1): 1-12. doi: 10.1080/01425918608909835
    [21]
    LONG W, CAI S H, JIAO J J, et al. A new hybrid algorithm based on grey wolf optimizer and cuckoo search for parameter extraction of solar photovoltaic models[J]. Energy Conversion and Management, 2020, 203: 112243. doi: 10.1016/j.enconman.2019.112243
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(6)

    Article Metrics

    Article views(53) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return