Volume 50 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
WANG T,YAN H B,LANG B. Threat intelligence attribution method based on graph attention mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2293-2303 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0590
Citation: WANG T,YAN H B,LANG B. Threat intelligence attribution method based on graph attention mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2293-2303 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0590

Threat intelligence attribution method based on graph attention mechanism

doi: 10.13700/j.bh.1001-5965.2022.0590
Funds:  National Key Research and Development Program of China (2019QY1400)
More Information
  • Corresponding author: E-mail:yhb@cert.org.cn
  • Received Date: 05 Jul 2022
  • Accepted Date: 09 Sep 2022
  • Available Online: 18 Jul 2024
  • Publish Date: 28 Dec 2022
  • Threat intelligence correlation analysis has become an effective way to trace the source of cyber attacks. The threat intelligence analysis reports of different advanced persistent threat (APT) organizations were crawled from the public threat intelligence sources, and a threat intelligence report classification method based on graph attention mechanism was proposed, which was to detect whether the newly generated threat intelligence analysis report categories were known attack organizations, so as to facilitate further expert analysis. By designing a threat intelligence knowledge graph, extracting tactical and technical intelligence, mining the attributes of malicious samples, IPs and domain names, constructing a complex network, and using the graph attention neural network to classify the threat intelligence reporting nodes. Evaluation indicates that the method can achieve an accuracy rate of 78% while considering the uneven distribution of categories, which can effectively achieve the purpose of judging the organization to which the threat intelligence report belongs.

     

  • loading
  • [1]
    尹彦, 张红斌, 刘滨, 等. 网络安全态势感知中的威胁情报技术[J]. 河北科技大学学报, 2021, 42(2): 195-204. doi: 10.7535/hbkd.2021yx02012

    YIN Y, ZHANG H B, LIU B, et al. Threat intelligence technology in network security situation awareness[J]. Journal of Hebei University of Science and Technology, 2021, 42(2): 195-204(in Chinese). doi: 10.7535/hbkd.2021yx02012
    [2]
    王淮, 杨天长. 网络威胁情报关联分析技术[J]. 信息技术, 2021, 45(2): 26-32.

    WANG H, YANG T C. Network threat intelligence correlation analysis technology[J]. Information Technology, 2021, 45(2): 26-32(in Chinese).
    [3]
    赵宁, 李蕾, 刘青春, 等. 基于网络开源情报的威胁情报分析与管理[J]. 情报杂志, 2021, 40(11): 16-22. doi: 10.3969/j.issn.1002-1965.2021.11.003

    ZHAO N, LI L, LIU Q C, et al. Analysis and management of threat intelligence based on OSINT[J]. Journal of Intelligence, 2021, 40(11): 16-22(in Chinese). doi: 10.3969/j.issn.1002-1965.2021.11.003
    [4]
    党超辉, 马志伟, 邵国飞, 等. 基于大数据与威胁情报的防御体系研究[J]. 计算机与网络, 2021, 47(15): 46-47. doi: 10.3969/j.issn.1008-1739.2021.15.043

    DANG C H, MA Z W, SHAO G F, et al. Research on defense system based on big data and threat intelligence[J]. Computer & Network, 2021, 47(15): 46-47(in Chinese). doi: 10.3969/j.issn.1008-1739.2021.15.043
    [5]
    何志鹏, 刘鹏, 王鹤. 网络威胁情报标准化建设分析[J]. 信息安全研究, 2021, 7(6): 503-511. doi: 10.3969/j.issn.2096-1057.2021.06.004

    HE Z P, LIU P, WANG H. Analysis on standardization construction of cyber threat intelligence[J]. Journal of Information Security Research, 2021, 7(6): 503-511(in Chinese). doi: 10.3969/j.issn.2096-1057.2021.06.004
    [6]
    张红斌, 尹彦, 赵冬梅, 等. 基于威胁情报的网络安全态势感知模型[J]. 通信学报, 2021, 42(6): 182-194.

    ZHANG H B, YIN Y, ZHAO D M, et al. Network security situational awareness model based on threat intelligence[J]. Journal on Communications, 2021, 42(6): 182-194(in Chinese).
    [7]
    赵阳. 绿盟威胁情报解决方案[J]. 信息安全与通信保密, 2020, 18(S1): 23-28. doi: 10.3969/j.issn.1009-8054.2020.z1.006

    ZHAO Y. Green alliance threat intelligence solution[J]. Information Security and Communications Privacy, 2020, 18(S1): 23-28(in Chinese). doi: 10.3969/j.issn.1009-8054.2020.z1.006
    [8]
    VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks[EB/OL]. (2017-10-30)[2022-07-12]. http://arxiv.org/abs/1710.10903.
    [9]
    黄克振, 连一峰, 冯登国, 等. 一种基于图模型的网络攻击溯源方法[J]. 软件学报, 2022, 33(2): 683-698.

    HUANG K Z, LIAN Y F, FENG D G, et al. Method of cyber attack attribution based on graph model[J]. Journal of Software, 2022, 33(2): 683-698(in Chinese).
    [10]
    蔡扬. 基于网络行为分析的单机木马检测技术的研究与实现[D]. 杭州: 浙江大学, 2016.

    CAI Y. Research and implementation of Trojan detection technology base on network behavior analysis[D]. Hangzhou: Zhejiang University, 2016(in Chinese).
    [11]
    PERRY L, SHAPIRA B, PUZIS R. NO-DOUBT: Attack attribution based on threat intelligence reports[C]//Proceedings of the IEEE International Conference on Intelligence and Security Informatics. Piscataway: IEEE Press, 2019: 80-85.
    [12]
    NAVEEN S, PUZIS R, ANGAPPAN K. Deep learning for threat actor attribution from threat reports[C]//Proceedings of the International Conference on Computer, Communication and Signal Processing. Piscataway: IEEE Press, 2020: 1-6.
    [13]
    丁兆云, 刘凯, 刘斌, 等. 网络安全知识图谱研究综述[J]. 华中科技大学学报(自然科学版), 2021, 49(7): 79-91.

    DING Z Y, LIU K, LIU B, et al. Survey of cyber security knowledge graph[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2021, 49(7): 79-91(in Chinese).
    [14]
    杨沛安, 刘宝旭, 杜翔宇. 面向攻击识别的威胁情报画像分析[J]. 计算机工程, 2020, 46(1): 136-143.

    YANG P A, LIU B X, DU X Y. Portrait analysis of threat intelligence for attack recognition[J]. Computer Engineering, 2020, 46(1): 136-143(in Chinese).
    [15]
    李序, 连一峰, 张海霞, 等. 网络安全知识图谱关键技术[J]. 数据与计算发展前沿, 2021, 3(3): 9-18.

    LI X, LIAN Y F, ZHANG H X, et al. Key technologies of cyber security knowledge graph[J]. Frontiers of Data & Computing, 2021, 3(3): 9-18(in Chinese).
    [16]
    刘强, 祝鹏程. 基于联合学习的端到端威胁情报知识图谱构建方法[J]. 现代计算机, 2021(16): 16-21. doi: 10.3969/j.issn.1007-1423.2021.16.004

    LIU Q, ZHU P C. End-to-end threat intelligence knowledge graph construction method based on joint learning[J]. Modern Computer, 2021(16): 16-21(in Chinese). doi: 10.3969/j.issn.1007-1423.2021.16.004
    [17]
    李涛. 威胁情报知识图谱构建与应用关键技术研究[D]. 郑州: 战略支援部队信息工程大学, 2020: 21-74.

    LI T. Research on key technologies for construction and application of threat intelligence knowledge graph[D]. Zhengzhou: Information Engineering University, 2020: 21-74(in Chinese).
    [18]
    王一琁. 基于知识图谱的网络安全态势感知技术研究与实现[D]. 成都: 电子科技大学, 2020: 18-68.

    WANG Y Q. Research and implementation of NSSA technology based on knowledge graph[D]. Chengdu: University of Electronic Science and Technology of China, 2020: 18-68(in Chinese).
    [19]
    LU X F, ZHOU X, WANG W T, et al. Domain-oriented topic discovery based on features extraction and topic clustering[J]. IEEE Access, 2020, 8: 93648-93662. doi: 10.1109/ACCESS.2020.2994516
    [20]
    HOSSEN M I, ISLAM A, ANOWAR F, et al. Generating cyber threat intelligence to discover potential security threats using classification and topic modeling[EB/OL]. (2021-08-16)[2022-07-14]. http://arxiv.org/abs/2108.06862.
    [21]
    陈斌. 基于注意力机制的网络表示学习算法研究[D]. 合肥: 中国科学技术大学, 2020: 13-32.

    CHEN B. Network representation learning algorithm research based on attention mechanism[D]. Hefei: University of Science and Technology of China, 2020: 13-32(in Chinese).
    [22]
    PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: Online learning of social representations[C]//Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014: 701-710.
    [23]
    BRUNA J, ZAREMBA W, SZLAM A, et al. Spectral networks and locally connected networks on graphs[EB/OL]. (2013-12-21)[2022-07-14]. https://arxiv.org/abs/1312.6203.
    [24]
    TANG J, QU M, WANG M Z, et al. LINE: Large-scale information network embedding[C]//Proceedings of the International Conference on World Wide Web. New York: ACM, 2015: 1067-1077.
    [25]
    WANG D X, CUI P, ZHU W W. Structural deep network embedding[C]//Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 1225-1234.
    [26]
    DONG Y X, CHAWLA N V, SWAMI A. Metapath2vec: Scalable representation learning for heterogeneous networks[C]//Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2017: 135-144.
    [27]
    KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. (2016-09-09)[2022-07-20]. http://arxiv.org/abs/1609.02907.
    [28]
    HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs[C]//Proceedings of the International Conference on Neural Information Processing Systems. New York: ACM, 2017: 1025–1035.
    [29]
    LYU Q S, DING M, LIU Q, et al. Are we really making much progress? Revisiting, benchmarking and refining heterogeneous graph neural networks[C]//Proceedings of the ACM SIGKDD Conference on Knowledge Discovery & Data Mining. New York: ACM, 2021: 1150-1160.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(6)

    Article Metrics

    Article views(95) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return