Volume 48 Issue 9
Sep.  2022
Turn off MathJax
Article Contents
YANG Lijun, HUANG Dongqi, HAN Wang, et al. Influence of flow topology on instability and atomization of liquid jets[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1757-1766. doi: 10.13700/j.bh.1001-5965.2022.0608(in Chinese)
Citation: YANG Lijun, HUANG Dongqi, HAN Wang, et al. Influence of flow topology on instability and atomization of liquid jets[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1757-1766. doi: 10.13700/j.bh.1001-5965.2022.0608(in Chinese)

Influence of flow topology on instability and atomization of liquid jets

doi: 10.13700/j.bh.1001-5965.2022.0608
Funds:

National Natural Science Foundation of China 11922201

National Natural Science Foundation of China 11872091

National Natural Science Foundation of China 11927802

National Natural Science Foundation of China U1837211

More Information
  • Corresponding author: FU Qingfei, E-mail: fuqingfei@buaa.edu.cn
  • Received Date: 11 Jul 2022
  • Accepted Date: 14 Aug 2022
  • Publish Date: 19 Aug 2022
  • In the combustion process of liquid fuels, jet instabilities and atomization are the starting points, which can have significant effects on following processes such as evaporation and combustion. There remain gaps in our under standing of the turbulent jet atomization mechanism despite the extensive prior research. This work aims to reveal the atomization mechanism of turbulent liquid planar jets through the use of flow topology. A high-resolution direct numerical simulation method is used to solve the atomization process of a liquid plane jet in a still air environment. In order to clarify the process by which flow topology affects the atomization of liquid plane jets, the interaction between various topologies in the flow field and the curvature of the gas-liquid interface is analyzed. It is found that all flow topologies contribute to the generation of compressive and extensive strain rate, among which the UFC topology has the greatest effect on the flow field strain rate; the curvature of the liquid volume fraction iso-surface shows a negative correlation with the strain rate under the influence of the flow topology. In addition, the UFC structure mainly generates extensive strain, while the remaining flow topologies mainly generate compressive strain. These results suggest that the jet atomization process is mainly influenced by the UFC topology, which facilitates a large extensive strain at the gas-liquid interface, which in turn promotes the generation of sheet or saddle structures, thus causing liquid jet fragmentation.

     

  • loading
  • [1]
    DESJARDINS O, MCCASLIN J, OWKES M, et al. Direct numerical and large-eddy simulation of primary atomization in complex geometries[J]. Atomization and Sprays, 2013, 23(11): 1001-1048. doi: 10.1615/AtomizSpr.2013007679
    [2]
    SUSSMAN M, SMEREKA P, OSHER S. A level set approach for computing solutions to incompressible two-phase flow[J]. Journal of Computational Physics, 1994, 114 (1): 146-159. doi: 10.1006/jcph.1994.1155
    [3]
    HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39 (1): 201-225. doi: 10.1016/0021-9991(81)90145-5
    [4]
    LEBOISSETIER A, ZALESKI S. Direct numerical simulation of the atomization of liquid jet[C]//Proceedings of the ILASS-Europe, 2001: 2-6.
    [5]
    KLEIN M. Directed numerical simulation of a spatially developing water sheet at moderate Reynolds number[J]. International Journal of Heat and Fluid Flow, 2005, 26(5): 722-731. doi: 10.1016/j.ijheatfluidflow.2005.01.003
    [6]
    SANDER W, WEIGAND B. Direct numerical simulation and analysis of instability enhancing parameters in liquid sheets at moderate Reynolds numbers[J]. Physics of Fluids, 2008, 20(5): 053301. doi: 10.1063/1.2909661
    [7]
    MÉNARD T, TANGUY S, BERLEMONT A. Coupling level set/VOF/ghost fluid methods: Validation and application to 3D simulation of the primary break-up of a liquid jet[J]. International Journal of Multiphase Flow, 2007, 33(5): 510-524. doi: 10.1016/j.ijmultiphaseflow.2006.11.001
    [8]
    DESJARDINS O, PITSCH H. Detailed numerical investigation of turbulent atomization of liquid jets[J]. Atomization and Sprays, 2010, 20(4): 311-336. doi: 10.1615/AtomizSpr.v20.i4.40
    [9]
    SHINJO J, UMEMURA A. Simulation of liquid jet primary breakup: Dynamics of ligament and droplet formation[J]. International Journal of Multiphase Flow, 2010, 36(7): 513-532. doi: 10.1016/j.ijmultiphaseflow.2010.03.008
    [10]
    PERRY A E, CHONG M S. A description of eddying motions and flow patterns using critical-point concepts[J]. Annual Review of Fluid Mechanics, 1987, 19(1): 125-155. doi: 10.1146/annurev.fl.19.010187.001013
    [11]
    CHONG M S, PERRY A E, CANTWELL B J. A general classification of three-dimensional flow fields[J]. Physics of Fluids, 1990, 2(5): 765-777. doi: 10.1063/1.857730
    [12]
    CHONG M S, SORIA J, PERRY A E, et al. Turbulence structures of wall-bounded shear flows found using DNS data[J]. Journal of Fluid Mechanics, 1998, 357: 225-247. doi: 10.1017/S0022112097008057
    [13]
    ELSINGA G E, MARUSIC I. Universal aspects of small-scale motions in turbulence[J]. Journal of Fluid Mechanics, 2010, 662: 514-539. doi: 10.1017/S0022112010003381
    [14]
    HASSLBERGER J, KLEIN M, CHAKRABORTY N. Local flow topology analysis applied to bubble-induced turbulence[C]//12th International ERCOFTAC Symposium on Engineering Turbulence Modelling and Measurements. Montpellier, 2018: 270-290.
    [15]
    WATANABE T, SAKAI Y, NAGATA K, et al. Vortex stretching and compression near the turbulent/non-turbulent interface in a planar jet[J]. Journal of Fluid Mechanics, 2014, 758: 754-785. doi: 10.1017/jfm.2014.559
    [16]
    JOSEF H, SEBASTIAN K, MARKUS K, et al. Flow topologies in primary atomization of liquid jets: A direct numerical simulation analysis[J]. Journal of Fluid Mechanics, 2019, 859: 819-838. doi: 10.1017/jfm.2018.845
    [17]
    HAN W, ARNE S, FELIX D, et al. Influence of flow topology and scalar structure on flame-tangential diffusion in turbulent non-premixed combustion[J]. Combustion and Flame, 2019, 206: 21-36. doi: 10.1016/j.combustflame.2019.04.038
    [18]
    DESJARDINS O, BLANQUART G, BALARAC G, et al. High order conservative finite difference scheme for variable density low Mach number turbulent flows[J]. Journal of Computational Physics, 2008, 227(15): 7125-7159 doi: 10.1016/j.jcp.2008.03.027
    [19]
    DESJARDINS O, MOUREAU V, PITSCH H. An accurate conservative level set/ghost fluid method for simulating turbulent atomization[J]. Journal of Computational Physics, 2008, 227(18): 8395-8416. doi: 10.1016/j.jcp.2008.05.027
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article Metrics

    Article views(432) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return