Volume 50 Issue 5
May  2024
Turn off MathJax
Article Contents
LIU S Y,YANG H L,ZHANG Z G,et al. Vibration control of flexible spacecraft with output constraints and external disturbances[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1560-1567 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0622
Citation: LIU S Y,YANG H L,ZHANG Z G,et al. Vibration control of flexible spacecraft with output constraints and external disturbances[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1560-1567 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0622

Vibration control of flexible spacecraft with output constraints and external disturbances

doi: 10.13700/j.bh.1001-5965.2022.0622
Funds:  National Natural Science Foundation of China (62303071,62173047);Natural Science Foundation of Science and Technology Department of Jilin Province (222614JC010794374,20210101179JC);The Science and Technology Project of Jilin Provincial Education Department of China during the 13th Five-Year Plan Period (JJKH20200672)
More Information
  • Corresponding author: E-mail:liyc@ccut.edu.cn
  • Received Date: 19 Jul 2022
  • Accepted Date: 14 Aug 2022
  • Available Online: 23 Dec 2022
  • Publish Date: 15 Dec 2022
  • A vibration control with direct joint torque input is presented for flexible spacecraft systems subject to external disturbances and output limits. Firstly, the dynamic characteristics of the system are described by a distributed parameter model which is composed of partial differential equation (PDE) and ordinary differential equation (ODE). Secondly, the tangential barrier Lyapunov function is used to ensure that the output constraints of vibration errors and attitude angle errors are met by a nonlinear disturbance observer that is intended to adjust for external disturbances. The asymptotic stability of the system is proved by extended LaSalle’s invariance principle and semigroup theory. It not only realizes the position control of attitude angle, but also restrains the elastic vibration of flexible spacecraft. Finally, the effectiveness of the proposed control method is verified by comparison simulations.

     

  • loading
  • [1]
    王长国, 卫剑征, 刘宇艳, 等. 航天柔性展开结构技术及其应用研究进展[J]. 宇航学报, 2020, 41(6): 761-769.

    WANG C G, WEI J Z, LIU Y Y, et al. Some advances in technologies of aerospace flexible deployable structure and their applications[J]. Journal of Astronautics, 2020, 41(6): 761-769(in Chinese).
    [2]
    王涵斌, 贺曦, 王晋军. 柔性翼气动力和变形特性的实验研究[J]. 北京航空航天大学学报, 2022, 48(4): 665-673.

    WANG H B, HE X, WANG J J. Experimental study on aerodynamic and deformation characteristics of flexible membrane wing[J]. Journal of Beijing university Aeronautics and Astronautics, 2022, 48(4): 665-673(in Chinese).
    [3]
    HE W, TANG X Y, WANG T T, et al. Trajectory tracking control for a three-dimensional flexible wing[J]. IEEE Transactions on Control Systems Technology, 2022, 30(5): 2243-2250. doi: 10.1109/TCST.2021.3139087
    [4]
    颜奇民, 胡俊华, 陈国明, 等. 变体航行器动力学建模与仿真[J]. 北京航空航天大学学报, 2021, 47(12): 2602-2610.

    YAN Q M, HU J H, CHEN G M, et al. Dynamic modeling and simulation of morphing vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2602-2610(in Chinese).
    [5]
    LIU S Y, LANGARI R, LI Y C. Non-linear direct joint control for manipulator handling a flexible payload with input constraints[J]. International Journal of Robotics and Automation, 2019, 34(6): 645-653.
    [6]
    LIU Y, CHEN X B, WU Y L, et al. Adaptive neural network control of a flexible spacecraft subject to input nonlinearity and asymmetric output constraint[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(11): 6226-6234. doi: 10.1109/TNNLS.2021.3072907
    [7]
    MA J T, WEN H, JIN D P. PDE model-based boundary control of a spacecraft with double flexible appendages under prescribed performance[J]. Advances in Space Research, 2020, 65(1): 586-597. doi: 10.1016/j.asr.2019.09.050
    [8]
    CHEN T, WEN H, WEI Z T. Distributed attitude tracking for multiple flexible spacecraft described by partial differential equations[J]. Acta Astronautica, 2019, 159: 637-645. doi: 10.1016/j.actaastro.2019.02.010
    [9]
    HE W, MENG T T, HE X Y, et al. Iterative learning control for a flapping wing micro aerial vehicle under distributed disturbances[J]. IEEE Transactions on Cybernetics, 2019, 49(4): 1524-1535. doi: 10.1109/TCYB.2018.2808321
    [10]
    CAO F F, LIU J K. Adaptive neural network control of an arm-string system with actuator fault based on a PDE model[J]. Journal of Vibration and Control, 2019, 25(1): 172-181. doi: 10.1177/1077546318772476
    [11]
    刘增波, 乔建忠, 郭雷, 等. 基于非线性干扰观测器的航天器相对姿轨耦合控制[J]. 北京航空航天大学学报, 2020, 46(10): 1907-1915.

    LIU Z B, QIAO J Z, GUO L, et al. Nonlinear disturbance observer based control for relative position and attitude coupled spacecraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(10): 1907-1915(in Chinese).
    [12]
    张秀云, 宗群, 窦立谦, 等. 柔性航天器振动主动抑制及姿态控制[J]. 航空学报, 2019, 40(4): 233-242.

    ZHANG X Y, ZONG Q, DOU L Q, et al. Active vibration suppression and attitude control for flexible spacecraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4): 233-242(in Chinese).
    [13]
    ZHAO Z J, AHN C K, LI H X. Boundary antidisturbance control of a spatially nonlinear flexible string system[J]. IEEE Transactions on Industrial Electronics, 2020, 67(6): 4846-4856. doi: 10.1109/TIE.2019.2931230
    [14]
    LIU S Y, LIU Z J, LI Y C, et al. Nonlinear disturbance observer- based direct joint control for manipulation of a flexible payload with output constraints[J]. International Journal of Control, 2023, 96(5): 1377-1388. doi: 10.1080/00207179.2022.2046858
    [15]
    HE W, KANG F S, KONG L H, et al. Vibration control of a constrained two-link flexible robotic manipulator with fixed-time convergence[J]. IEEE Transactions on Cybernetics, 2022, 52(7): 5973-5983. doi: 10.1109/TCYB.2021.3064865
    [16]
    MA G, TAN Z F, LIU Y M, et al. Adaptive robust barrier-based control of a 3D flexible riser system subject to boundary displacement constraints[J]. International Journal of Robust and Nonlinear Control, 2022, 32(5): 3062-3077. doi: 10.1002/rnc.5693
    [17]
    TANG Z L, TEE K P, HE W. Tangent barrier Lyapunov functions for the control of output-constrained nonlinear systems[J]. IFAC Proceedings Volumes, 2013, 46(20): 449-455. doi: 10.3182/20130902-3-CN-3020.00122
    [18]
    彭聪, 缪卫东, 曾聪. 基于机器视觉的轻型梁三维振动测量方法[J]. 北京航空航天大学学报, 2021, 47(2): 207-212.

    PENG C, MIAO W D, ZENG C. Three-dimensional vibration measurement method for lightweight beam based on machine vision[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(2): 207-212(in Chinese).
    [19]
    TEE K P, GE S S, TAY E H. Barrier Lyapunov functions for the control of output-constrained nonlinear systems[J]. Automatica (Journal of IFAC), 2009, 45(4): 918-927. doi: 10.1016/j.automatica.2008.11.017
    [20]
    PAZY A. Semigroups of linear operators and applications to partial differential equations[M]. Berlin: Springer, 1983: 14-15.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views(683) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return