Volume 50 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
CHEN B,LUO L,JIANG A L,et al. Numerical simulation of separation characteristics for internally buried weapon at high Mach number[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2113-2122 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0627
Citation: CHEN B,LUO L,JIANG A L,et al. Numerical simulation of separation characteristics for internally buried weapon at high Mach number[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2113-2122 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0627

Numerical simulation of separation characteristics for internally buried weapon at high Mach number

doi: 10.13700/j.bh.1001-5965.2022.0627
Funds:  National Numerical Windtunnel (NNW) Project
More Information
  • Corresponding author: E-mail:zph2s@sina.com
  • Received Date: 22 Jul 2022
  • Accepted Date: 26 Aug 2022
  • Available Online: 28 Jul 2023
  • Publish Date: 18 Jul 2023
  • The internal weapon may exhibit distinct separation characteristics due to the greater shear layer and shock wave of the high Mach number (Ma > 2) weapon bay, as well as distinct flow characteristics compared to the subsonic, transonic, and supersonic weapon bays. In this paper, using the unstructured hybrid mesh flow solver NNW-Flow Star, and based on the improved HLLE++ format and adaptive hybrid mesh technology established in the previous simulation for high Mach number cavity flow, the numerical simulations are used to compare and analyze the separation characteristics of the internal weapon at Ma=4 and Ma=2. The effects of different leading edge flow control measures such as annular plates, transverse columns, serrations and cylindrical arrays on the separation characteristics of high Mach number (Ma=4) weapons are investigated to provide guidance for the design of safe separation schemes for internal weapons at high Mach number. The findings show that at a high Mach number (Ma=4), the weapon bay’s distinct flow characteristics and the shock wave’s different shock angle at the leading edge of the weapon bay cause the internal weapon and weapon bay to have different channel effects at first and different shock interference during the separation process. As a result, the internal weapon’s attitude angle and pitch moment at a high Mach number (Ma=4) differ from those at Ma=2. After the leading edge flow control measures are adopted, the rising trend of the positive pitching moment for internal weapons is weakened and the yaw angle is reduced, which is conducive to the safe separation of missiles.

     

  • loading
  • [1]
    常超, 丁海河. 内埋弹射武器机弹安全分离技术综述[J]. 现代防御技术, 2012, 40(5): 67-74. doi: 10.3969/j.issn.1009-086x.2012.05.013

    CHANG C, DING H H. Review on missile store safety separation technology of embedded ejection weapons[J]. Modern Defence Technology, 2012, 40(5): 67-74(in Chinese). doi: 10.3969/j.issn.1009-086x.2012.05.013
    [2]
    CLARK R. Evaluation of F-111 weapon bay aero-acoustic and weapon separation improvement techniques[R]. AFFDL: Engineering Physics, 1979: 2-15.
    [3]
    BAKER W, KEEN S, MORGRET C. Validation of weapon separation predictions using F/A-22 flight test results[C]// USAF Developmental Test and Evaluation Summit. Reston: AIAA, 2004: 6803.
    [4]
    ATWOOD C A. Computation of a controlled store separation from a cavity[J]. Journal of Aircraft, 1995, 32(4): 846-852.
    [5]
    CAVALLO P, LEE R, HOSANGADI A, et al. Simulation of weapons bay store separation flowfields using unstructured grids[C]// 17th Applied Aerodynamics Conference. Reston: AIAA, 1999: 3188.
    [6]
    SICKLES W, HAND T, MORGRET C, et al. High-fidelity, time-accurate CFD store separation simulations from a B-1B bay with comparisons to quasi-steady engineering methods[C]// 46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008: 186.
    [7]
    SAHOO D, ANNASWAMY A, ALVI F. Microjets-based active control of store trajectory in a supersonic cavity using a low-order model[C]// 11th AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2005: 3097.
    [8]
    JOHNSON R, STANEK M, GROVE J. Store separation trajectory deviations due to unsteady weapons bay aerodynamics[C]// 46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008: 188.
    [9]
    KIM D H, CHOI J H, KWON O J. Detached eddy simulation of weapons bay flows and store separation[J]. Computers & Fluids, 2015, 121: 1-10.
    [10]
    WESTMORELAND W. Trajectory variation due to an unsteady flow-field[C]// Proceedings of the 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009: 550.
    [11]
    吴继飞. 内埋武器舱系统气动特性研究[D]. 绵阳: 中国空气动力研究与发展中心, 2012.

    WU J F. Investigation on aerodynamic characteristics of internal weapons bay system[D]. Mianyang: China Aerodynamics Research and Development Center, 2012(in Chinese).
    [12]
    薛飞, 金鑫, 王誉超, 等. 内埋武器高速投放风洞试验技术[J]. 航空学报, 2017, 38(1): 120114.

    XUE F, JIN X, WANG Y C, et al. Wind tunnel test technique on high speed weapon delivery from internal weapons bay[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(1): 120114(in Chinese).
    [13]
    杨俊, 李骞, 谢云恺, 等. 超声速内埋武器分离数值研究[J]. 弹箭与制导学报, 2015, 35(4): 171-174.

    YANG J, LI Q, XIE Y K, et al. Numerical studies on store separation from a weapon bay at supersonic speed[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2015, 35(4): 171-174(in Chinese).
    [14]
    朱收涛, 曹林平, 封普文, 等. 平飞时内埋导弹弹射分离仿真与研究[J]. 电光与控制, 2012, 19(9): 67-71,75. doi: 10.3969/j.issn.1671-637X.2012.09.016

    ZHU S T, CAO L P, FENG P W, et al. Simulation of missile separation from internal weapon bay[J]. Electronics Optics & Control, 2012, 19(9): 67-71,75(in Chinese). doi: 10.3969/j.issn.1671-637X.2012.09.016
    [15]
    冯必鸣, 聂万胜, 车学科, 等. 安装角度对内埋式导弹分离特性的影响[J]. 空气动力学学报, 2010, 28(6): 672-675. doi: 10.3969/j.issn.0258-1825.2010.06.010

    FENG B M, NIE W S, CHE X K, et al. Effect of fixing angle to separation characteristics of internal store[J]. Acta Aerodynamica Sinica, 2010, 28(6): 672-675(in Chinese). doi: 10.3969/j.issn.0258-1825.2010.06.010
    [16]
    雷娟棉, 牛健平, 王锁柱, 等. 初始分离条件对航弹与载机分离安全性影响的数值模拟研究[J]. 兵工学报, 2016, 37(2): 357-366. doi: 10.3969/j.issn.1000-1093.2016.02.023

    LEI J M, NIU J P, WANG S Z, et al. Numerical simulation about the effect of initial separation condition on safety of aerial bomb separated from an aircraft[J]. Acta Armamentarii, 2016, 37(2): 357-366(in Chinese). doi: 10.3969/j.issn.1000-1093.2016.02.023
    [17]
    李骞, 杨俊, 谢云恺, 等. 超声速内埋武器不同分离方式分析[J]. 航空计算技术, 2014, 44(5): 69-72. doi: 10.3969/j.issn.1671-654X.2014.05.017

    LI Q, YANG J, XIE Y K, et al. Simulation of different separation modes of internal weapon at supersonic speed[J]. Aeronautical Computing Technique, 2014, 44(5): 69-72(in Chinese). doi: 10.3969/j.issn.1671-654X.2014.05.017
    [18]
    郭亮, 王纯, 叶斌, 等. 采用流动控制的超声速内埋物投放特性研究[J]. 航空学报, 2015, 36(6): 1752-1761. doi: 10.7527/S1000-6893.2014.0325

    GUO L, WANG C, YE B, et al. Investigation on characteristics of store release from internal bay in supersonic flow under flow control[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6): 1752-1761(in Chinese). doi: 10.7527/S1000-6893.2014.0325
    [19]
    刘瑜. 内埋式弹舱武器发射分离过程研究[D]. 南京: 南京航空航天大学, 2010.

    LIU Y. Fluid dynamics analysis on missile launching and separating from weapon bay[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010(in Chinese).
    [20]
    张培红, 王明, 邓有奇, 等. 武器分离及舱门开启过程数值模拟研究[J]. 空气动力学学报, 2013, 31(3): 277-281,293.

    ZHANG P H, WANG M, DENG Y Q, et al. Numerical simulation of store separation and door operation[J]. Acta Aerodynamica Sinica, 2013, 31(3): 277-281,293(in Chinese).
    [21]
    陈坚强, 吴晓军, 张健, 等. FlowStar: 国家数值风洞(NNW)工程非结构通用CFD软件[J]. 航空学报, 2021, 42(9): 625739.

    CHEN J Q, WU X J, ZHANG J, et al. FlowStar: general unstructured-grid CFD software for National Numerical Windtunnel (NNW) Project[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 625739(in Chinese).
    [22]
    张培红, 罗磊, 贾洪印, 等. HLLE++格式在高马赫数空腔流动模拟中的应用[J]. 计算力学学报, 2022, 39(6): 778-785.

    ZHANG P H, LUO L, JIA H Y, et al. Application of HLLE++ scheme in the simulation of high Mach number cavity flow[J]. Chinese Journal of Computational Mechanics, 2022, 39(6): 778-785.
    [23]
    张培红, 唐银, 唐静, 等. 基于自适应混合网格的高马赫数空腔流动模拟[J]. 北京航空航天大学学报, 2023, 49(6): 1311-1318.

    ZHANG P H, TANG Y, TANG J, et al. Simulation of cavity flow at high Mach number based on adaptive unstructured hybrid mesh[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(6): 1311-1318(in Chinese).
    [24]
    崔鹏程, 唐静, 李彬, 等. 基于超网格的重叠网格守恒插值方法[J]. 航空学报, 2018, 39(3): 121569.

    CUI P C, TANG J, LI B, et al. A conservative interpolation method for overset mesh via super mesh[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(3): 121569(in Chinese).
    [25]
    STALLINGS R L, WILCOX F J. Experimental cavity pressure distributions at supersonic speeds: NASA-TP-2683[R]. Washington: NASA, 1987: 1-79.
    [26]
    HEIM E R. CFD wing /pylon /finned store mutual inter-ference wind tunnel experiment[R]. Tennessee: Arnold Engineering Development Center, 1991.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(2)

    Article Metrics

    Article views(746) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return