Volume 50 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
LIU C Y,YAN R W,WANG T,et al. Optimizing airborne PLC capacity through insufficient CP and window in OFDM-based communication[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2557-2564 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0636
Citation: LIU C Y,YAN R W,WANG T,et al. Optimizing airborne PLC capacity through insufficient CP and window in OFDM-based communication[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2557-2564 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0636

Optimizing airborne PLC capacity through insufficient CP and window in OFDM-based communication

doi: 10.13700/j.bh.1001-5965.2022.0636
Funds:  Manned Space Pre-Research Project (060301)
More Information
  • Corresponding author: E-mail:powerlinecomm@163.com
  • Received Date: 26 Jul 2022
  • Accepted Date: 12 Nov 2022
  • Available Online: 16 Dec 2022
  • Publish Date: 25 Nov 2022
  • Power line communication (PLC) decreases cabling volume and reduces wiring harness complexity. Therefore, capacity is not optimal if sufficient cyclic prefix (CP) that is no shorter than the channel duration is employed. Multipath components, on the other hand, suffer modest attenuation in PLC channels, creating extended channel duration. Therefore, it is reasonable to adopt insufficient CP combined with a windowing scheme to maximize capacity. A comprehensive approach to jointly adapt window and CP parameters is proposed, using the edge-window method which applies different windows to inner and edge subcarriers. Using frequency-selective impedances and airborne PLC topologies, one can first simulate PLC channels in accordance with transmission line theory. The CP and window settings should then be adjusted in three phases. In the first stage, obtain the minimum window overhead under the restriction of adjacent channel interference (ACI). In the second stage, adjust CP length to optimize capacity with the window obtained in the first stage. In the third stage, using edge-window, optimize inner and edge subcarriers separately and finally obtain optimal parameters. The results of the simulation indicate that the suggested strategy might approach or meet the maximum capacity achieved by full space enumeration, avoid excessive time growth of orthogonal frequency division multiplexing (OFDM) symbols while lowering ACI, and make the computation volume acceptable.

     

  • loading
  • [1]
    DÉGARDIN V, SIMON E P, MORELLE M, et al. On the possibility of using PLC in aircraft[C]//Proceedings of the International Symposium on Power Line Communications and Its Applications. Piscataway: IEEE Press, 2010: 337-340.
    [2]
    DEGARDIN V, JUNQUA I, LIENARD M, et al. Theoretical approach to the feasibility of power-line communication in aircrafts[J]. IEEE Transactions on Vehicular Technology, 2013, 62(3): 1362-1366. doi: 10.1109/TVT.2012.2228245
    [3]
    DEGARDIN V, LIENARD M, DEGAUQUE P, et al. Power line communication in aircraft: Channel modelling and performance analysis[C]//Proceedings of the 8th International Caribbean Conference on Devices, Circuits and Systems. Piscataway: IEEE Press, 2012: 1-3.
    [4]
    LARHZAOUI T, NOUVEL F, BAUDAIS J Y, et al. OFDM PLC transmission for aircraft flight control system[C]//Proceedings of the International Symposium on Power Line Communications and Its Applications. Piscataway: IEEE Press, 2014: 220-225.
    [5]
    MARÉ J C, FU J. Review on signal-by-wire and power-by-wire actuation for more electric aircraft[J]. Chinese Journal of Aeronautics, 2017, 30(3): 857-870. doi: 10.1016/j.cja.2017.03.013
    [6]
    ZIMMERMANN M, DOSTERT K. A multipath model for the powerline channel[J]. IEEE Transactions on Communications, 2002, 50(4): 553-559. doi: 10.1109/26.996069
    [7]
    TONELLO A M, VERSOLATTO F. Bottom-up statistical PLC channel modeling—Part I: Random topology model and efficient transfer function computation[J]. IEEE Transactions on Power Delivery, 2011, 26(2): 891-898. doi: 10.1109/TPWRD.2010.2096518
    [8]
    TONELLO A M, ZHENG T. Bottom-up transfer function generator for broadband PLC statistical channel modeling[C]//Proceedings of the International Symposium on Power Line Communications and Its Applications. Piscataway: IEEE Press, 2009: 7-12.
    [9]
    ESMAILIAN T, KSCHISCHANG F R, GULAK P G. In-building power lines as high-speed communication channels: Channel characterization and a test channel ensemble[J]. International Journal of Communication Systems, 2003, 16(5): 381-400. doi: 10.1002/dac.596
    [10]
    LIONG A A G, GOPAL L, JUWONO F H, et al. A channel model for three-node two-way relay-aided PLC systems[C]//Proceedings of the IEEE International Conference on Signal and Image Processing Applications. Piscataway: IEEE Press, 2019: 52-57.
    [11]
    MENG H, CHEN S, GUAN Y L, et al. Modeling of transfer characteristics for the broadband power line communication channel[J]. IEEE Transactions on Power Delivery, 2004, 19(3): 1057-1064. doi: 10.1109/TPWRD.2004.824430
    [12]
    TONELLO A M, D’ALESSANDRO S, LAMPE L. Cyclic prefix design and allocation in bit-loaded OFDM over power line communication channels[J]. IEEE Transactions on Communications, 2010, 58(11): 3265-3276. doi: 10.1109/TCOMM.2010.092810.090447
    [13]
    D’ALESSANDRO S, TONELLO A M, LAMPE L. Adaptive pulse-shaped OFDM with application to in-home power line communications[J]. Telecommunication Systems, 2012, 51(1): 3-13. doi: 10.1007/s11235-010-9410-3
    [14]
    WU X L, ZHU B, RONG Y. Channel model proposal for indoor relay-assisted power line communications[J]. IET Communications, 2018, 12(10): 1236-1244. doi: 10.1049/iet-com.2017.0782
    [15]
    POZAR D M. 微波工程[M]. 3版. 张肇仪, 周乐柱, 吴德明, 等译. 北京: 电子工业出版社, 2010: 160.

    POZAR D M. Microwave engineering[M]. 3rd ed. ZHANG Z Y, ZHOU L Z, WU D M, et al, translated. Beijing: Publishing House of Electronics Industry, 2010: 160(in Chinese).
    [16]
    SAHIN A, ARSLAN H. Edge windowing for OFDM based systems[J]. IEEE Communications Letters, 2011, 15(11): 1208-1211. doi: 10.1109/LCOMM.2011.090611.111530
    [17]
    朱新宇. 民航飞机电子电气系统[M]. 成都: 西南交通大学出版社, 2016: 16-17.

    ZHU X Y. Electronic and electrical system of civil aviation aircraft[M]. Chengdu: Southwest Jiaotong University Press, 2016: 16-17 (in Chinese).
    [18]
    周海勇. 飞机电力线载波数据通信关键技术研究[D]. 南京: 南京航空航天大学, 2005: 15-17.

    ZHOU H Y. Research on key technology of high speed communication based aeroplane power line[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2005: 15-17(in Chinese).
    [19]
    SKLAR B. 数字通信: 基础与应用[M]. 2版. 徐平平, 宋铁成, 叶芝慧, 等译. 北京: 电子工业出版社, 2010: 725.

    SKLAR B. Digital communications: Fundamentals and applications[M]. 2nd ed. XU P P, SONG T C, YE Z H, et al. translated. Beijing: Publishing House of Electronics Industry, 2010: 725(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views(216) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return