Volume 50 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
LI H G,WANG Y F,YANG L C. Meta-learning-based few-shot object detection for remote sensing images[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2503-2513 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0637
Citation: LI H G,WANG Y F,YANG L C. Meta-learning-based few-shot object detection for remote sensing images[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2503-2513 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0637

Meta-learning-based few-shot object detection for remote sensing images

doi: 10.13700/j.bh.1001-5965.2022.0637
Funds:  National Key Research and Development Program of China (2020YFB0505602); National Natural Science Foundation of China (62076019,U20B2042)
More Information
  • Corresponding author: E-mail:wyfeng@buaa.edu.cn
  • Received Date: 26 Jul 2022
  • Accepted Date: 04 Oct 2022
  • Available Online: 14 Nov 2022
  • Publish Date: 07 Nov 2022
  • This study introduces meta-learning technology to propose a meta-learning-based few-shot object detection algorithm for the few-shot item detection job in remote sensing photos. The object and background are easily confused under the condition of large-scale changes and small samples in remote sensing images. To solve this issue, we expand the single-scale re-weighting into a multi-scale re-weighting module in the feature extraction part, where the prior knowledge of supporting samples can be adapted to different objects. In order to solve the problem of large inter-class similarities and intra-class differences among remote sensing objects, a scene correction module is designed by leveraging the dependence relationship between the object and scene to correct the detected object’s category. In order to restrict the feature distributions of various objects, we additionally incorporate the marginal loss to the feature space. Experimental results show that the proposed algorithm achieves high detection performance on the 10-shot task setting, achieving mean average precision (mAP) of 64.18% and 37.27% on the new category of NWPU VHR-10 and DIOR datasets, respectively.

     

  • loading
  • [1]
    聂光涛, 黄华. 光学遥感图像目标检测算法综述[J]. 自动化学报, 2021, 47(8): 1749-1768.

    NIE G T, HUANG H. A survey of object detection in optical remote sensing images[J]. Acta Automatica Sinica, 2021, 47(8): 1749-1768(in Chinese).
    [2]
    ZHANG R Q, SHAO Z F, HUANG X, et al. Adaptive dense pyramid network for object detection in UAV imagery[J]. Neurocomputing, 2022, 489: 377-389.
    [3]
    张振伟, 郝建国, 黄健, 等. 小样本图像目标检测研究综述[J]. 计算机工程与应用, 2022, 58(5): 1-11.

    ZHANG Z W, HAO J G, HUANG J, et al. Review of few-shot object detection[J]. Computer Engineering and Applications, 2022, 58(5): 1-11(in Chinese).
    [4]
    赵永强, 饶元, 董世鹏, 等. 深度学习目标检测方法综述[J]. 中国图象图形学报, 2020, 25(4): 629-654.

    ZHAO Y Q, RAO Y, DONG S P, et al. Survey on deep learning object detection[J]. Journal of Image and Graphics, 2020, 25(4): 629-654(in Chinese).
    [5]
    谢富, 朱定局. 深度学习目标检测方法综述[J]. 计算机系统应用, 2022, 31(2): 1-12.

    XIE F, ZHU D J. Survey on deep learning object detection[J]. Computer Systems and Applications, 2022, 31(2): 1-12 (in Chinese).
    [6]
    WU J X, LIU S T, HUANG D, et al. Multi-scale positive sample refinement for few-shot object detection[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2020: 456-472.
    [7]
    CHEN H, WANG Y L, WANG G Y, et al. LSTD: A low-shot transfer detector for object detection[J]. AAAI Conference on Artificial Intelligence, 2018, 32(1): 2836-2843.
    [8]
    LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2016: 21-37.
    [9]
    REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[C]//Proceedings of the Advances in Neural Information Processing Systems. Piscataway: IEEE Press, 2015: 28.
    [10]
    KARLINSKY L, SHTOK J, HARARY S, et al. RepMet: Representative-based metric learning for classification and few-shot object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2019: 5192-5201.
    [11]
    KANG B Y, LIU Z, WANG X, et al. Few-shot object detection via feature reweighting[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE Press, 2019: 8419-8428.
    [12]
    YAN X P, CHEN Z L, XU A N, et al. Meta R-CNN: Towards general solver for instance-level low-shot learning[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE Press, 2019: 9576-9585.
    [13]
    REDMON J, FARHADI A. YOLO9000: Better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 6517-6525.
    [14]
    XIAO Z X, QI J H, XUE W, et al. Few-shot object detection with self-adaptive attention network for remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 4854-4865. doi: 10.1109/JSTARS.2021.3078177
    [15]
    LE JEUNE P, LEBBAH M, MOKRAOUI A, et al. Experience feedback using representation learning for few-shot object detection on aerial images[C]//Proceedings of the 20th IEEE International Conference on Machine Learning and Applications. Piscataway: IEEE Press, 2021: 662-667.
    [16]
    BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: Optimal speed and accuracy of object detection[EB/OL]. (2020-04-23) [2021-11-01]. http://arxiv.org/abs/2004.10934.
    [17]
    HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. doi: 10.1109/TPAMI.2015.2389824
    [18]
    ZHAO Q J, SHENG T, WANG Y T, et al. M2Det: A single-shot object detector based on multi-level feature pyramid network[J]. National Conference on Artificial Intelligence, 2019, 33(1): 9259-9266. doi: 10.1609/aaai.v33i01.33019259
    [19]
    LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 8759-8768.
    [20]
    LI B H, YANG B Y, LIU C, et al. Beyond max-margin: Class margin equilibrium for few-shot object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2021: 7359-7368.
    [21]
    ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: Faster and better learning for bounding box regression[J]. AAAI Conference on Artificial Intelligence, 2020, 34(7): 12993-13000. doi: 10.1609/aaai.v34i07.6999
    [22]
    LI X Y, LI H G, YU R N, et al. Few-shot scene classification with attention mechanism in remote sensing[C]//Proceedings of the International Conference on Computer Engineering and Innovative Application of VR. Bristol: IOP Publishing, 2021, 1961: 012015.
    [23]
    RUBNER Y, TOMASI C, GUIBAS L J. The earth mover’s distance as a metric for image retrieval[J]. International Journal of Computer Vision, 2000, 40(2): 99-121. doi: 10.1023/A:1026543900054
    [24]
    LONG Y, GONG Y P, XIAO Z F, et al. Accurate object localization in remote sensing images based on convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5): 2486-2498. doi: 10.1109/TGRS.2016.2645610
    [25]
    LI K, WAN G, CHENG G, et al. Object detection in optical remote sensing images: A survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159: 296-307. doi: 10.1016/j.isprsjprs.2019.11.023
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(4)

    Article Metrics

    Article views(387) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return