Volume 50 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
JIN H B,YANG Y,CHANG Y X,et al. Research on response time of cockpit toggle switch under influence of multiple factors[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2413-2420 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0657
Citation: JIN H B,YANG Y,CHANG Y X,et al. Research on response time of cockpit toggle switch under influence of multiple factors[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2413-2420 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0657

Research on response time of cockpit toggle switch under influence of multiple factors

doi: 10.13700/j.bh.1001-5965.2022.0657
Funds:  AVIC Project (H04120200002)
More Information
  • Corresponding author: E-mail:cauc_cyx@126.com
  • Received Date: 27 Jul 2022
  • Accepted Date: 14 Sep 2022
  • Available Online: 14 Nov 2022
  • Publish Date: 11 Nov 2022
  • With the goal of observing how a pilot’s response changes when he or she manipulates the toggle switch in the cockpit, an experimental flight simulation cabin will be built, response time data will be gathered from the pilots when they manipulate the toggle switch, and the multi-factor variance analysis method will be used to examine the impact of various factors on the pilots’ responses. The findings indicate that: the pilot’s response time is the shortest when the correct operation switch direction is forward as positive, as opposed to backward as positive. The cockpit toggle switch is situated on the left panel in front of the pilot, with a 45° downward horizontal slope. The pilot’s response time is influenced by the interaction of three main factors: panel position, load processing, and light guidance. The pilot’s response time is shorter when the control is applied, longer when there are high load factors, and reduced when there is light guidance. The objective and true results are beneficial in raising the pilot’s degree of flight safety through experimental research and data processing analysis. They also offer fundamental experimental research and recommendations for control device design.

     

  • loading
  • [1]
    DEMAGALSKI J, HARRIS D, SALMON P, et al. Design induced errors on the modern flight deck during approach and landing[C]// HCI-Aero 2002 Proceedings. Palo Alto: AAAI, 2002: 173-178.
    [2]
    DON H. Rule fragmentation in the airworthiness regulations: A human factors perspective[C]//Proceedings of the International Conference on Engineering Psychology and Cognitive Ergonomics. Berlin: Springer, 2011: 546-555.
    [3]
    阎奕帆, 甘旭升, 吴亚荣, 等. 基于改进FRAM方法的飞机着陆安全品质分析[J]. 北京航空航天大学学报, 2023, 49(8): 1964-1973.

    YAN Y F, GAN X S, WU Y R, et al. Aircraft landing safety quality analysis based on modified FRAM method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(8): 1964-1973(in Chinese).
    [4]
    王丽荣, 庄达民, 王睿, 等. 飞机拨动开关布置的人机工效分析[J]. 中国民航飞行学院学报, 2004, 15(2): 3-6.

    WANG L R, ZHUANG D M, WANG R, et al. Ergonomic analysis of toggle switch arrangement in aircraft[J]. Journal of Civil Aviation Flight University of China, 2004, 15(2): 3-6(in Chinese).
    [5]
    袁守利, 郭铮. 考虑驾驶员反应时间的车辆碰撞预警模型[J]. 安全与环境学报, 2021, 21(1): 270-276.

    YUAN S L, GUO Z. A warning model for vehicle collision on account of the reaction time of the driver[J]. Journal of Safety and Environment, 2021, 21(1): 270-276(in Chinese).
    [6]
    唐阳山, 夏道华. 不同驾驶员反应时间对汽车防撞安全距离的影响研究[J]. 科学技术与工程, 2016, 16(1): 250-254.

    TANG Y S, XIA D H. Study the influence of different driver’s reaction time to the automobile anti-collision safety distance[J]. Science Technology and Engineering, 2016, 16(1): 250-254(in Chinese).
    [7]
    潘雨帆. 驾驶员简单反应时间预测方法研究[D]. 成都: 西南交通大学, 2018: 19-24.

    PAN Y F. Study on the prediction method of driver’s simple reaction time[D]. Chengdu: Southwest Jiaotong University, 2018: 19-24 (in Chinese).
    [8]
    DURIĆ P, FILIPOVIĆ D. Reaction time of drivers who caused road traffic accidents[J]. Medicinski Pregled, 2009, 62(3-4): 114-119. doi: 10.2298/MPNS0904114D
    [9]
    SCIALFA C T, BORKENHAGEN D, LYON J, et al. A comparison of static and dynamic hazard perception tests[J]. Accident Analysis & Prevention, 2013, 51: 268-273. doi: 10.1016/j.aap.2012.12.006
    [10]
    马小翔, 陈丰, 张霖. 预期接管场景下接管绩效及接管风险研究[J]. 中国公路学报, 2022, 35(1): 159-168.

    MA X X, CHEN F, ZHANG L. Takeover-performance and takeover-risk evaluation under non-critical transition scenarios[J]. China Journal of Highway and Transport, 2022, 35(1): 159-168(in Chinese).
    [11]
    耿岚鑫, 刘凇男, 刘大学. 驾驶员反应时间研究[J]. 交通节能与环保, 2015, 11(2): 25-29.

    GENG L X, LIU S N, LIU D X. Research on reaction time of driver[J]. Energy Conservation & Environmental Protection in Transportation, 2015, 11(2): 25-29(in Chinese).
    [12]
    张开冉, 李国芳. 新驾驶员反应特性分析[J]. 中国安全科学学报, 2008, 18(8): 115-118.

    ZHANG K R, LI G F. Analysis on the driving reaction ability of novice drivers[J]. China Safety Science Journal, 2008, 18(8): 115-118(in Chinese).
    [13]
    KHASHBAT J, TSEVEGJAV T, MYAGMARJAV J, et al. Determining the driver’s reaction time in the stationary and real-life environments (comparative study)[C]//Proceedings of the 7th International Forum on Strategic Technology. Piscataway: IEEE Press, 2012: 1-3.
    [14]
    SAMANI A R, MISHRA S, DEY K. Assessing the effect of long-automated driving operation, repeated take-over requests, and driver’s characteristics on commercial motor vehicle drivers’ driving behavior and reaction time in highly automated vehicles[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2022, 84: 239-261. doi: 10.1016/j.trf.2021.10.015
    [15]
    GUO M Z, LI S W, WANG L H, et al. Research on the relationship between reaction ability and mental state for online assessment of driving fatigue[J]. International Journal of Environmental Research and Public Health, 2016, 13(12): 1174. doi: 10.3390/ijerph13121174
    [16]
    NAEERI S, KANG Z, MANDAL S, et al. Multimodal analysis of eye movements and fatigue in a simulated glass cockpit environment[J]. Aerospace, 2021, 8(10): 283. doi: 10.3390/aerospace8100283
    [17]
    FABRE E F, JAHANPOUR E S, CAUSSE M. Human mirror neuron system based alarms in the cockpit: A neuroergonomic evaluation[J]. Applied Psychophysiology and Biofeedback, 2021, 46(1): 29-42. doi: 10.1007/s10484-020-09481-0
    [18]
    何静远. 驾驶舱飞行员手眼配合模式与认知过程相关性研究[D]. 上海: 上海交通大学, 2013: 91-94.

    HE J Y. Research on correlation between eye-hand coordination pattern and cognitive process of pilot in flight deck[D]. Shanghai: Shanghai Jiao Tong University, 2013: 91-94(in Chinese).
    [19]
    林燕丹, 艾剑良, 杨彪, 等. 民机驾驶舱在恶劣光环境下的飞行员视觉工效研究[J]. 科技资讯, 2016, 14(13): 175-176.

    LIN Y D, AI J L, YANG B, et al. Visual ergonomics research of civil aircraft cockpit in harsh iuminous conditions[J]. Science & Technology Information, 2016, 14(13): 175-176(in Chinese).
    [20]
    凡明坤. 飞机驾驶舱显示界面对飞行员工作负荷的影响研究[D]. 南京: 南京航空航天大学, 2018: 9-21.

    FAN M K. Research on the effect of aircraft cockpit display interface on pilots’ workload[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018: 9-21(in Chinese).
    [21]
    潘玲玲, 孙有朝, 刘星, 等. 飞机座舱低光照度对飞行员视觉工效的影响[J]. 人类工效学, 2017, 23(1): 1-4.

    PAN L L, SUN Y C, LIU X, et al. Effect of aircraft cabin low illumination on visual ergonomics of pilots[J]. Chinese Journal of Ergonomics, 2017, 23(1): 1-4(in Chinese).
    [22]
    戴苏榕, 朱建坤, 李威. 基于听觉感知的驾驶舱信息提示设计研究[J]. 航空电子技术, 2021, 52(4): 9-13.

    DAI S R, ZHU J K, LI W. Design of cockpit information notification based on auditory perception[J]. Avionics Technology, 2021, 52(4): 9-13(in Chinese).
    [23]
    MARSH J R. The impact of changing the size of aircraft radar displays on visual search in the cockpit[D]. Kaduna: Air Force Institute of Technology, 2020.
    [24]
    陈农田. 航空中人的因素理论研究综述[J]. 人类工效学, 2014, 20(4): 89-92.

    CHEN N T. A summary of the theoretical research on human factors in aviation[J]. Chinese Journal of Ergonomics, 2014, 20(4): 89-92(in Chinese).
    [25]
    陆崑, 卫宗敏, 庄达民, 等. 飞机驾驶舱显示界面脑力负荷判别预测生理模型[J]. 北京航空航天大学学报, 2016, 42(4): 685-693.

    LU K, WEI Z M, ZHUANG D M, et al. Integrated physiological model for mental workload assessment and prediction of aircraft flight deck display interface[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(4): 685-693(in Chinese).
    [26]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 机械电气安全 指示、标志和操作 第3部分: 操作器的位置和操作的要求: GB/T 18209.3—2010[S]. 北京: 中国标准出版社, 2011.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Electrical safety of machinery—Indication, marking and actuation—Part 3: Requirements for the location and operation of actuators: GB/T 18209.3—2010[S]. Beijing: Standards Press of China, 2011(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article Metrics

    Article views(173) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return