Volume 50 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
SU F,WU S H,LIU Y P. Application of new photoelastic technology based on pixelated polarization camera[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2432-2438 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0667
Citation: SU F,WU S H,LIU Y P. Application of new photoelastic technology based on pixelated polarization camera[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2432-2438 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0667

Application of new photoelastic technology based on pixelated polarization camera

doi: 10.13700/j.bh.1001-5965.2022.0667
Funds:  National Natural Science Foundation of China (12072008)
More Information
  • Corresponding author: E-mail:sufei@buaa.edu.cn
  • Received Date: 28 Jul 2022
  • Accepted Date: 30 Jan 2023
  • Available Online: 10 Mar 2023
  • Publish Date: 08 Mar 2023
  • A new type of stress testing technology has been developed in the last 20 years by combining pixelated polarization cameras with traditional photoelastic methods. It overcomes the disadvantages of traditional photoelastic methods such as weak ability to resist environmental light interference, complex quantitative measurement operation, and difficulty in realizing real-time measurement. This paper introduced the working principle of this method and showed its great technical advantages in adapting to complex environments and high-precision testing through two examples. Some forward-looking application suggestions of the new photoelastic technology were given, including the efficient detection of the installation stress of the glass curtain wall and the online detection of the internal defects of the tempered glass.

     

  • loading
  • [1]
    雷振坤. 结构分析数字光测力学[M]. 大连: 大连理工大学出版社, 2012.

    LEI Z K. Digital photomechanics for structural analysis[M]. Dalian: Dalian University of Technology Press, 2012(in Chinese).
    [2]
    ASUNDI A, TONG L, BOAY C G. Dynamic phase-shifting photoelasticity[J]. Applied Optics, 2001, 40(22): 3654-3658. doi: 10.1364/AO.40.003654
    [3]
    KRAMER S L B, BEIERMANN B A, WHITE S R, et al. Simultaneous observation of phase-stepped images for photoelasticity using diffraction gratings[J]. Experimental Mechanics, 2013, 53(8): 1343-1355. doi: 10.1007/s11340-013-9747-0
    [4]
    NORDIN G P, MEIER J T, DEGUZMAN P C, et al. Micropolarizer array for infrared imaging polarimetry[J]. Journal of the Optical Society of America A, 1999, 16(5): 1168-1174. doi: 10.1364/JOSAA.16.001168
    [5]
    马宣. 高性能像素偏振相机的研制与相关应用研究[D]. 合肥: 中国科学技术大学, 2019.

    MA X. Development of high-performance pixelated-polarization-camera and related application research[D]. Hefei: University of Science and Technology of China, 2019(in Chinese).
    [6]
    ZHANG Z G, DONG F L, CHENG T, et al. Nano-fabricated pixelated micropolarizer array for visible imaging polarimetry[J]. The Review of Scientific Instruments, 2014, 85(10): 105002. doi: 10.1063/1.4897270
    [7]
    ARANCHUK V, LAL A K, HESS C F, et al. Pulsed spatial phase-shifting digital shearography based on a micropolarizer camera[J]. Optical Engineering, 2018, 57: 024109.
    [8]
    ONUMA T, OTANI Y. A development of two-dimensional birefringence distribution measurement system with a sampling rate of 1.3 MHz[J]. Optics Communications, 2014, 315: 69-73. doi: 10.1016/j.optcom.2013.10.086
    [9]
    KUNNEN B, MACDONALD C, DORONIN A, et al. Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media[J]. Journal of Biophotonics, 2015, 8(4): 317-323. doi: 10.1002/jbio.201400104
    [10]
    ZHANG Z G, DONGF L, QIAN K M, et al. Real-time phase measurement of optical vortices based on pixelated micropolarizer array[J]. Optics Express, 2015, 23(16): 20521-20528. doi: 10.1364/OE.23.020521
    [11]
    SAKAUE K, YONEYAMA S, KIKUTA H, et al. Evaluating crack tip stress field in a thin glass plate under thermal load[J]. Engineering Fracture Mechanics, 2008, 75(5): 1015-1026. doi: 10.1016/j.engfracmech.2007.04.025
    [12]
    YONEYAMA S, KAMIHORIUCHI H. A method for evaluating full-field stress components from a single image in interferometric photoelasticity[J]. Measurement Science and Technology, 2009, 20(7): 075302. doi: 10.1088/0957-0233/20/7/075302
    [13]
    尚奇. 光学玻璃在大功率连续激光辐照下的应力研究[D]. 南京: 南京理工大学, 2020.

    SHANG Q. Study on stress of optical glass under high power continuous laser irradiation[D]. Nanjing: Nanjing University of Science and Technology, 2020(in Chinese).
    [14]
    GOLDSTEIN D H. Polarizedlight[M]. New York: CRC Press, 2016.
    [15]
    杨洁, 金伟其, 裘溯, 等. 考虑偏振片非理想性的可见光偏振成像修正模型[J]. 光学精密工程, 2020, 28(2): 334-339.

    YANG J, JIN W Q, QIU S, et al. Correction model for visible light polarization imaging considering non-ideality of polarizers[J]. Optics and Precision Engineering, 2020, 28(2): 334-339(in Chinese).
    [16]
    SU F, WANG Z J. Error analysis and correction of a photoelastic method based on a pixelated polarization camera[J]. Optics and Lasers in Engineering, 2023, 161: 107374. doi: 10.1016/j.optlaseng.2022.107374
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views(290) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return