Volume 50 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
ZHANG J H,ZHAO W,WANG Z C,et al. UAV pedestrian tracking algorithm based on detection and re-identification[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2538-2546 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0675
Citation: ZHANG J H,ZHAO W,WANG Z C,et al. UAV pedestrian tracking algorithm based on detection and re-identification[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2538-2546 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0675

UAV pedestrian tracking algorithm based on detection and re-identification

doi: 10.13700/j.bh.1001-5965.2022.0675
Funds:  National Natural Science Foundation of China (61976014)
More Information
  • Corresponding author: E-mail:mengzhijun@buaa.edu.cn
  • Received Date: 01 Aug 2022
  • Accepted Date: 30 Dec 2022
  • Available Online: 03 Feb 2023
  • Publish Date: 19 Jan 2023
  • Combining intelligent detection and tracking algorithms with the flexibility of unmanned aerial vehicle (UAV) is a hot research topic for UAV applications. A UAV pedestrian tracking algorithm based on detection and re-identification was proposed for solving the problems of target slippage and occlusion due to the UAV’s viewpoint and motion. Firstly, TensorRT acceleration of trained YOLOv5 was performed to solve the problem of limited UAV computational resources; secondly, a pedestrian tracking algorithm framework was constructed based on a target detection algorithm and a re-identification algorithm with quantization acceleration; finally, the pedestrian matching degree was designed and determined to complete the pedestrian matching system design. Simulation experiments show that the trained YOLOv5 and OSNet have certain accuracy, and the YOLOv5 network with TensorRT acceleration has nearly 50% improvement in frame rate with guaranteed accuracy. The flight test shows that the proposed algorithm can achieve stable tracking of the target under the situation of pedestrian intersection and obstacle occlusion, and it has certain practicality and effectiveness.

     

  • loading
  • [1]
    葛向然. 无人机在情报领域应用前景[J]. 电子世界, 2019(19): 98-99.

    GE X R. Application prospect of UAV in intelligence field[J]. Electronics World, 2019(19): 98-99 (in Chinese).
    [2]
    SONKA M, HLAVAC V, BOYLE R. 图像处理、分析与机器视觉[M] . 3版. 艾海舟,苏延超,兴军亮,等. 北京: 清华大学出版社, 2011.

    SONKA M, HLAVAC V, BOYLE R. Image processing, analysis, and machine vision[M]. 3rd ed. AI H Z, SU Y C, Xing J L, et al, translated. Beijing: Tsinghua University Press, 2011(in Chinese).
    [3]
    BEAUCHEMIN S S, BARRON J L. The computation of optical flow[J]. ACM Computing Surveys, 1995, 27(3): 433-466. doi: 10.1145/212094.212141
    [4]
    HERRERO-JARABA E, ORRITE-URUÑUELA C, SENAR J. Detected motion classification with a double-background and a neighborhood-based difference[J]. Pattern Recognition Letters, 2006, 24(12): 2079-2092.
    [5]
    CUCCHIARA R, GRANA C, PICCARDI M, et al. Detecting moving objects, ghosts, and shadows in video streams[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(10): 1337-1342. doi: 10.1109/TPAMI.2003.1233909
    [6]
    BRAGANETO U, GOUTSIAS J. Object-based image analysis using multiscale connectivity[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(6): 892-907. doi: 10.1109/TPAMI.2005.124
    [7]
    REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 779-788.
    [8]
    REDMON J, FARHADI A. YOLO9000: Better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 6517-6525.
    [9]
    REDMON J, FARHADI A. YOLOv3: An incremental improvement[EB/OL]. (2018-04-08)[2022-08-01]. http://arxiv.org/abs/1804.02767.
    [10]
    LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2016: 21-37.
    [11]
    ZHANG N, DONAHUE J, GIRSHICK R, et al. Part-based R-CNNs for fine-grained category detection[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2014: 834-849.
    [12]
    GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2015: 1440-1448.
    [13]
    HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9):1904-1916.
    [14]
    REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[C]//Proceedings of the IEEE Transactions on Pattern Analysis and Machine Intelligence. Piscataway: IEEE Press, 2017: 1137-1149.
    [15]
    BOLME D S, BEVERIDGE J R, DRAPER B A, et al. Visual object tracking using adaptive correlation filters[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2010: 2544-2550.
    [16]
    HENRIQUES J F, CASEIRO R, MARTINS P, et al. Exploiting the circulant structure of tracking-by-detection with kernels[C]//Pro.ceedings of the European Conference on Computer Vision. Berlin: Springer, 2012: 702-715.
    [17]
    HENRIQUES J F, CASEIRO R, MARTINS P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583-596. doi: 10.1109/TPAMI.2014.2345390
    [18]
    DANELLJAN M, KHAN F S, FELSBERG M, et al. Adaptive color attributes for real-time visual tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2014: 1090-1097.
    [19]
    MA C, HUANG J B, YANG X K, et al. Hierarchical convolutional features for visual tracking[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2015: 3074-3082.
    [20]
    NAM H, HAN B. Learning multi-domain convolutional neural networks for visual tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 4293-4302.
    [21]
    NAM H, BAEK M, HAN B. Modeling and propagating CNNs in a tree structure for visual tracking[EB/OL]. (2016-08-25)[2022-08-01]. http://arxiv.org/abs/1608.07242.
    [22]
    HELD D, THRUN S, SAVARESE S. Learning to track at 100 FPS with deep regression networks[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2016: 749-765.
    [23]
    BERTINETTO L, VALMADRE J, HENRIQUES J F, et al. Fully-convolutional Siamese networks for object tracking[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2016: 850-865.
    [24]
    GUO Q, FENG W, ZHOU C, et al. Learning dynamic Siamese network for visual object tracking[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2017: 1781-1789.
    [25]
    LI B, YAN J J, WU W, et al. High performance visual tracking with Siamese region proposal network[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 8971-8980.
    [26]
    QIAN X L, FU Y W, JIANG Y G, et al. Multi-scale deep learning architectures for person re-identification[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2017: 5409-5418.
    [27]
    ZHOU K Y, YANG Y X, CAVALLARO A, et al. Omni-scale feature learning for person re-identification[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE Press, 2019: 3701-3711.
    [28]
    SUN Y F, ZHENG L, YANG Y, et al. Beyond part models: Person retrieval with refined part pooling and a strong convolutional baseline[C]//Proceedings of the Europwan Conference on Computer Vision. Berlin: Springer, 2018: 501–518.
    [29]
    SU C, LI J N, ZHANG S L, et al. Pose-driven deep convolutional model for person re-identification[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2017: 3980-3989.
    [30]
    FANG P F, JI P, PETERSSON L, et al. Set augmented triplet loss for video person re-identification[C]//Proceedings of the IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE Press, 2021: 464-473.
    [31]
    SUN Y F, CHENG C M, ZHANG Y H, et al. Circle loss: A unified perspective of pair similarity optimization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 6397-6406.
    [32]
    ZHU P F, WEN L Y, DU D W, et al. Detection and tracking meet drones challenge[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(11): 7380-7399. doi: 10.1109/TPAMI.2021.3119563
    [33]
    ZHENG L, SHEN L Y, TIAN L, et al. Scalable person re-identification: A benchmark[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2015: 1116-1124.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(3)

    Article Metrics

    Article views(312) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return