Volume 50 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
WANG D,YANG J,XIONG K. Autonomous navigation method of satellite constellation based on adaptive UKF[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2655-2666 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0696
Citation: WANG D,YANG J,XIONG K. Autonomous navigation method of satellite constellation based on adaptive UKF[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2655-2666 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0696

Autonomous navigation method of satellite constellation based on adaptive UKF

doi: 10.13700/j.bh.1001-5965.2022.0696
Funds:  Civil Aerospace Advance Research Project(D020403)
More Information
  • Corresponding author: E-mail:jing.yang@buaa.edu.cn
  • Received Date: 09 Aug 2022
  • Accepted Date: 19 Nov 2022
  • Available Online: 16 Dec 2022
  • Publish Date: 24 Dec 2022
  • The autonomous satellite constellation navigation system faces model uncertainty and is difficult to accurately obtain statistical characteristics of the time-varying system noise, thus affecting the navigation accuracy. To address this issue, an unscented Kalman filter (UKF) algorithm based on the online adaptive adjustment of system noise was proposed. An autonomous satellite constellation navigation method based on the relative measurement between satellites was designed according to the proposed adaptive UKF algorithm. This method combined the sampling strategy of singular value decomposition and scale correction to solve the problem that Cholesky decomposition cannot be carried out due to the loss of positive definiteness of the state error variance matrix when UKF was applied. Through the simulation results on a low earth orbit (LEO) local constellation and a middle earth orbit (MEO) global constellation, the effectiveness of the algorithm in improving the filtering accuracy and the confidence of state estimation was verified. Its orbit determination accuracy was better than the extended Kalman filter (EKF) algorithm, adaptive EKF algorithm, and UKF algorithm based on symmetrical sampling strategies. Finally, the Cramer-Rao lower bounds (CRLB) analysis method was used to verify the estimation performance of the algorithm.

     

  • loading
  • [1]
    PSIAKI M L. Absolute orbit and gravity determination using relative position measurements between two satellites[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(5): 1285-1297. doi: 10.2514/1.47560
    [2]
    KIHARA M, OKADA T. A satellite selection method and accuracy for the global positioning system[J]. Navigation, 1984, 31(1): 8-20. doi: 10.1002/j.2161-4296.1984.tb00856.x
    [3]
    GARCÍA-FERNÁNDEZ Á F, SVENSSON L. Gaussian MAP filtering using Kalman optimization[J]. IEEE Transactions on Automatic Control, 2015, 60(5): 1336-1349. doi: 10.1109/TAC.2014.2372909
    [4]
    CHEN L, JIANG B W, LIU Y Q, et al. Application of adaptive EKF in real-time orbit determination[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43(4): 187. doi: 10.1007/s40430-021-02867-z
    [5]
    XU Y, SHEN T, CHEN X Y, et al. Predictive adaptive Kalman filter and its application to INS/UWB-integrated human localization with missing UWB-based measurements[J]. International Journal of Automation and Computing, 2019, 16(5): 604-613. doi: 10.1007/s11633-018-1157-4
    [6]
    CAO L, YANG W W, LI H N, et al. Robust double gain unscented Kalman filter for small satellite attitude estimation[J]. Advances in Space Research, 2017, 60(3): 499-512. doi: 10.1016/j.asr.2017.03.014
    [7]
    LIU X H, GUAN J W, GAO X, et al. Adaptive robust unscented Kalman filter for power system dynamic state estimation[C]// 2021 40th Chinese Control Conference (CCC). Piscataway: IEEE Press, 2021: 6793-6798.
    [8]
    SHAN C H, ZHOU W D, YANG Y F, et al. Multi-fading factor and updated monitoring strategy adaptive Kalman filter-based variational Bayesian[J]. Sensors, 2020, 21(1): 198. doi: 10.3390/s21010198
    [9]
    MEHRJOUYAN A, ALFI A. Robust adaptive unscented Kalman filter for bearings-only tracking in three dimensional case[J]. Applied Ocean Research, 2019, 87: 223-232. doi: 10.1016/j.apor.2019.01.034
    [10]
    QI W J, SHENG Z B, WANG S G. Robust centralized fusion Kalman filters with uncertain noise variances[C]// 2019 Chinese Control and Decision Conference (CCDC). Piscataway: IEEE Press, 2019: 4028-4033.
    [11]
    ABDUL SALAM A O, SHERIFF R E, HU Y F, et al. Automatic modulation classification using interacting multiple model Kalman filter for channel estimation[J]. IEEE Transactions on Vehicular Technology, 2019, 68(9): 8928-8939.
    [12]
    MALEKZADEH P, SALIMIBENI M, MOHAMMADI A, et al. MM-KTD: multiple model Kalman temporal differences for reinforcement learning[J]. IEEE Access, 2020, 8: 128716-128729. doi: 10.1109/ACCESS.2020.3007951
    [13]
    XIONG K, WEI C L, ZHANG H Y. Parallel model adaptive Kalman filtering for autonomous navigation with line-of-sight measurements[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(11): 4017-4031. doi: 10.1177/0954410018813053
    [14]
    KIUMARSI B, VAMVOUDAKIS K G, MODARES H, et al. Optimal and autonomous control using reinforcement learning: a survey[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(6): 2042-2062. doi: 10.1109/TNNLS.2017.2773458
    [15]
    XIONG K, WEI C L, ZHANG H Y. Q-learning for noise covariance adaptation in extended Kalman filter[J]. Asian Journal of Control, 2021, 23(4): 1803-1816. doi: 10.1002/asjc.2336
    [16]
    PENG S M, CHEN C, SHI H B, et al. State of charge estimation of battery energy storage systems based on adaptive unscented Kalman filter with a noise statistics estimator[J]. IEEE Access, 2017, 5: 13202-13212. doi: 10.1109/ACCESS.2017.2725301
    [17]
    HAJIYEV C, SOKEN H E, GULER D C. Q-adaptation of SVD-aided UKF algorithm for nanosatellite attitude estimation[J]. IFAC-PapersOnLine, 2017, 50(1): 8273-8278. doi: 10.1016/j.ifacol.2017.08.1399
    [18]
    SOKEN H E, HACIZADE C, SAKAI S I. Simultaneous adaptation of the process and measurement noise covariances for the UKF applied to nanosatellite attitude estimation[J]. IFAC Proceedings Volumes, 2014, 47(3): 5921-5926. doi: 10.3182/20140824-6-ZA-1003.00773
    [19]
    HAVANGI R. Adaptive robust unscented Kalman filter with recursive least square for state of charge estimation of batteries[J]. Electrical Engineering, 2022, 104(2): 1001-1017. doi: 10.1007/s00202-021-01358-7
    [20]
    李瑞鹏. 基于测向测距的星座自主导航方法仿真研究[D]. 北京: 北京航空航天大学, 2018: 23-24.

    LI R P. Simulation Research on autonomous navigation method of constellation based on directions and ranging[D]. Beijing: Beihang University, 2018: 23-24(in Chinese).
    [21]
    何丽娜. 不同摄动力对低中高轨航天器轨道的影响分析[J]. 大地测量与地球动力学, 2017, 37(11): 1156-1160,1165.

    HE L N. Perturbation forces analysis for spacecraft of different orbit altitudes[J]. Journal of Geodesy and Geodynamics, 2017, 37(11): 1156-1160,1165 (in Chinese).
    [22]
    LIU F, LIU Y B, SUN X J, et al. A new multi-sensor hierarchical data fusion algorithm based on unscented Kalman filter for the attitude observation of the wave glider[J]. Applied Ocean Research, 2021, 109: 102562. doi: 10.1016/j.apor.2021.102562
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(5)

    Article Metrics

    Article views(280) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return