Volume 50 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
SONG X G,JIN J,ZHANG M Q,et al. Turbulence-radiation interaction in turbulent jet flame based on large-eddy simulation[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2667-2676 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0697
Citation: SONG X G,JIN J,ZHANG M Q,et al. Turbulence-radiation interaction in turbulent jet flame based on large-eddy simulation[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2667-2676 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0697

Turbulence-radiation interaction in turbulent jet flame based on large-eddy simulation

doi: 10.13700/j.bh.1001-5965.2022.0697
Funds:  National Science and Technology Major Project (2017-I-0004-0005); National Natural Science Foundation of China (91741125)
More Information
  • Corresponding author: E-mail:fwang@buaa.edu.cn
  • Received Date: 09 Aug 2022
  • Accepted Date: 13 Jan 2023
  • Available Online: 03 Feb 2023
  • Publish Date: 18 Jan 2023
  • In large eddy simulation (LES), the influence of subgrid-scale turbulence-radiation interaction (SGS-TRI) on the radiative source term for Sandia Flame D and the scaled Sandia flame D (Flame 4D) was studied. The transport probability density function (TPDF) method was used to simulate the turbulence combustion, and the spherical harmonics (P1 approximation) method and the weighted-sum-of-gray-gases model (WSGGM) were employed to simulate the radiation heat transfer. The optically thin fluctuation approximation (OTFA) of the turbulent vortex group was applied for processing the filtered absorption term, and different methods considering or omitting the SGS-TRI were used for solving the filtered emission term. The results show that the SGS-TRI has a relatively large effect on the time-averaged radiation source term (up to 25%) only in areas where the source term itself is small. The radial distributions of the time-averaged temperature and CO2 concentration calculated by considering and ignoring the SGS-TRI largely overlap (The relative difference is less than 3%). Therefore, the influence of SGS-TRI on the non-sooting turbulent jet flames (Flame D and Flame 4D) is small.

     

  • loading
  • [1]
    LEFEBVRE A H. Gas turbine combustion[M]. 2nd ed. Philadelphia: Taylor & Francis, 1999.
    [2]
    LI G N, MODEST M F. Importance of turbulence-radiation interactions in turbulent diffusion jet flames[J]. Journal of Heat Transfer, 2003, 125(5): 831-838. doi: 10.1115/1.1597621
    [3]
    WANG A Q, MODEST M F, HAWORTH D C, et al. Monte Carlo simulation of radiative heat transfer and turbulence interactions in methane/air jet flames[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2008, 109(2): 269-279. doi: 10.1016/j.jqsrt.2007.08.030
    [4]
    刘玉英, 吴辉霞, 薛然然, 等. TRI对湍流火焰模拟中辐射源项的影响[J]. 燃烧科学与技术, 2011, 17(2): 121-125.

    LIU Y Y, WU H X, XUE R R, et al. Influence of TRI on radiation source term during turbulent flame simulation[J]. Journal of Combustion Science and Technology, 2011, 17(2): 121-125 (in Chinese).
    [5]
    FRAGA G C, MIRANDA F C, FRANCA F H R, et al. Assessment of a model for emission subgrid-scale turbulence-radiation interaction applied to a scaled Sandia flame DD[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 248: 106986. doi: 10.1016/j.jqsrt.2020.106986
    [6]
    MIRANDA F C, COELHO P J, STRÖHLE J, et al. Large-eddy simulation of a bluff-body stabilised nonpremixed flame with radiation heat transfer[J]. Combustion Theory and Modelling, 2020, 24(4): 632-649.
    [7]
    COELHO P J. Approximate solutions of the filtered radiative transfer equation in large eddy simulations of turbulent reactive flows[J]. Combustion and Flame, 2009, 156: 1099-1110. doi: 10.1016/j.combustflame.2008.10.006
    [8]
    CONSALVI J L, NMIRA F, KONG W J. On the modeling of the filtered radiative transfer equation in large eddy simulations of lab-scale sooting turbulent diffusion flames[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 221: 51-60. doi: 10.1016/j.jqsrt.2018.09.020
    [9]
    GUPTA A, HAWORTH D C, MODEST M F. Turbulence-radiation interactions in large-eddy simulations of luminous and nonluminous nonpremixed flames[J]. Proceedings of the Combustion Institute, 2013, 34(1): 1281-1288. doi: 10.1016/j.proci.2012.05.052
    [10]
    MIRANDA F C, COELHO P J, DI MARE F, et al. Study of turbulence-radiation interactions in large-eddy simulation of scaled Sandia flame D[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 228: 47-56. doi: 10.1016/j.jqsrt.2019.02.010
    [11]
    JONES W P, PRASAD V N. Large Eddy Simulation of the Sandia Flame Series (D–F) using the Eulerian stochastic field method[J]. Combustion and Flame, 2010, 157(9): 1621-1636. doi: 10.1016/j.combustflame.2010.05.010
    [12]
    YIN C G. Refined weighted sum of gray gases model for air-fuel combustion and its impacts[J]. Energy & Fuels, 2013, 27(10): 6287-6294.
    [13]
    MENGÜÇ M P, VISKANTA R. Radiative transfer in three-dimensional rectangular enclosures containing inhomogeneous, anisotropically scattering media[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1985, 33(6): 533-549. doi: 10.1016/0022-4073(85)90021-4
    [14]
    郝金波. 非均匀各向异性散射介质内辐射传递求解的有限体积法[D]. 哈尔滨: 哈尔滨工业大学, 2013.

    HAO J B. Finite volume method for solving radiative transfer in inhomogeneous anisotropic scattering media[D]. Harbin: Harbin Institute of Technology, 2013 (in Chinese).
    [15]
    MASRI A R, DIBBLE R W, BARLOW R S. Turbulent nonpremixed flames stabilished on a piloted jet burner[C]//Proceedings of the International Workshop on Measurement and Computation of Turbulent Nonpremixed Flames. California: Sandia National Laboratories, 1996: 41-46.
    [16]
    ZHOU L X, QIAO L, ZHANG J. A unified second-order moment turbulence-chemistry model for simulating turbulent combustion and NOx formation[J]. Fuel, 2002, 81: 1703-1709. doi: 10.1016/S0016-2361(01)00173-9
    [17]
    徐晓. 湍流非预混火焰中热辐射影响的数值研究[D]. 合肥: 中国科学技术大学, 2006.

    XU X. Numerical investigation of thermal radiation effects of non-premixed flames[D]. Hefei: University of Science and Technology of China, 2006 (in Chinese).
    [18]
    DORIGON L J, DUCIAK G, BRITTES R, et al. WSGG correlations based on HITEMP2010 for computation of thermal radiation in non-isothermal, non-homogeneous H2O/CO2 mixtures[J]. International Journal of Heat and Mass Transfer, 2013, 64: 863-873. doi: 10.1016/j.ijheatmasstransfer.2013.05.010
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(4)

    Article Metrics

    Article views(276) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return