Volume 48 Issue 9
Sep.  2022
Turn off MathJax
Article Contents
SU Donglin, CUI Shuo, BAI Jiangfei, et al. Fast prediction method for radiated and scattered coupled fields in complex electromagnetic environment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1553-1560. doi: 10.13700/j.bh.1001-5965.2022.0705(in Chinese)
Citation: SU Donglin, CUI Shuo, BAI Jiangfei, et al. Fast prediction method for radiated and scattered coupled fields in complex electromagnetic environment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1553-1560. doi: 10.13700/j.bh.1001-5965.2022.0705(in Chinese)

Fast prediction method for radiated and scattered coupled fields in complex electromagnetic environment

doi: 10.13700/j.bh.1001-5965.2022.0705
More Information
  • Corresponding author: LI Yaoyao, E-mail: liyaoyao@buaa.edu.cn
  • Received Date: 01 Aug 2022
  • Accepted Date: 18 Aug 2022
  • Publish Date: 23 Aug 2022
  • A coupled scattered field fast prediction method based on the radiation source pattern and polarization scattering matrix is proposed for the complex electromagnetic environment in which the target and interfering radiation sources exist simultaneously and affect the scattered field of the target. The near real-time fast prediction of the overall electromagnetic field in the radiation-scattering coupled scenario is made possible by utilizing the radiation source pattern and the scattering data of all directions of the target, which can be independently obtained and loaded in advance. The effects of the radiation-scattering coupling on the scene's echo field are determined through simulations by calculating the changes in the total electric field of the radiation source and scatter at different distances and relative strengths. Calculation of the whole field of the scene doesn't involve electromagnetic calculation methods, which meets the demand for real-time data provision in the complex electromagnetic environment infield simulation test and is engineering applicable.

     

  • loading
  • [1]
    隋起胜, 袁建全. 反舰导弹战场电磁环境仿真及试验鉴定技术[M]. 北京: 国防工业出版社, 2015: 1-8.

    SUI Q S, YUAN J Q. Anti-ship missile battlefield electromagnetic environment simulation and test identification technology[M]. Beijing: National Defense Industry Press, 2015: 1-8(in Chinese).
    [2]
    苏东林, 谢树果, 戴飞, 等. 系统级电磁兼容性量化设计理论与方法[M]. 北京: 国防工业出版社, 2015: 49-52.

    SU D L, XIE S G, DAI F, et al. Theory and method for quantitative design of system-level electromagnetic compatibility[M]. Beijing: National Defense Industry Press, 2015: 49-52(in Chinese).
    [3]
    王磊, 苏东林, 谢树果, 等. 飞机进近着陆电磁环境建模与辐射分布分析[J]. 北京航空航天大学学报, 2012, 38(10): 1369-1374. doi: 10.13700/j.bh.1001-5965.2012.10.023

    WANG L, SU D L, XIE S G, et al. Modeling of electromagnetic environment and radiation distribution analysis for aircraft approaching and landing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(10): 1369-1374(in Chinese). doi: 10.13700/j.bh.1001-5965.2012.10.023
    [4]
    黄培康, 殷红成, 许小剑. 雷达目标特性[M]. 北京: 电子工业出版社, 2005: 4-22.

    HUANG P K, YIN H C, XU X J. Radar target characteristics[M]. Beijing: Publishing House of Electronics Industry, 2005: 4-22(in Chinese).
    [5]
    何国瑜, 卢才成, 洪家才, 等. 电磁散射的计算和测量[M]. 北京: 北京航空航天大学出版社, 2004: 19-28.

    HE G Y, LU C C, HONG J C, et al. Calculation and measurement of electromagnetic scattering[M]. Beijing: Beihang University Press, 2004: 19-28(in Chinese).
    [6]
    ROY J E. The concept of the scattered field and the finite-difference time-domain method of the scattered-field formulation[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(9): 4102-4107. doi: 10.1109/TAP.2016.2583462
    [7]
    BICKEL S H. Some invariant properties of the polarization scattering matrix[J]. Proceedings of the IEEE, 1965, 53(8): 1070-1072. doi: 10.1109/PROC.1965.4088
    [8]
    LI C, LI Y Z, YANG Y, et al. Moving target's scattering matrix estimation with a polarimetric radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(8): 5540-5551. doi: 10.1109/TGRS.2020.2966905
    [9]
    吴龙刚, 苏东林, 陈佳佳, 等. 半空间中机载甚低频双拖曳天线电磁辐射特性[J]. 北京航空航天大学学报, 2011, 37(11): 1471-1474. doi: 10.13700/j.bh.1001-5965.2011.11.007

    WU L G, SU D L, CHEN J J, et al. Analysis of electromagnetic radiation for airborne very-low-frequency(VLF) dual trailing antenna in half-space[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(11): 1471-1474(in Chinese). doi: 10.13700/j.bh.1001-5965.2011.11.007
    [10]
    LIU N W, ZHU L, LIU Z X, et al. Radiation pattern reshaping of a narrow slot antenna for bandwidth enhancement and stable pattern using characteristic modes analysis[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(1): 726-731. doi: 10.1109/TAP.2021.3098535
    [11]
    CAO X Y, CHEN M S, QI Q, et al. An improved GMRES method for solving electromagnetic scattering problems by MoM[J/OL]. IEEE Transactions on Antennas and Propagation, 2022(2022-07-07)[2022-08-10]. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9818956.
    [12]
    BOTELHO D P, MARECHAL Y, RAMDANE B. Higher order NEM and FEM accuracy comparison[J]. IEEE Transactions on Magnetics, 2015, 51(3): 1-4.
    [13]
    CHEN G Z, YANG S C, SU D L. An accurate three-dimensional FDTD(2, 4) method on face-centered cubic grids with low numerical dispersion[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(9): 1711-1715. doi: 10.1109/LAWP.2019.2926423
    [14]
    LEAO T F C, CHOPIN V M, TRUEMAN C W. Electromagnetic characterization of a gyproc slab by measurement and 3-D geometrical optics simulation[J]. IEEE Antennas and Wireless Propagation Letters, 2013, 12: 1570-1573. doi: 10.1109/LAWP.2013.2293342
    [15]
    苏东林, 宗国明, 吕善伟. 武装直升飞机雷达散射截面的估算方法[J]. 北京航空航天大学学报, 1994, 20(3): 248-252. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK403.003.htm

    SU D L, ZONG G M, LV S W. The method of calculating radar cross section of fighting helicopters[J]. Journal of Beijing University of Aeronautics and Astronautics, 1994, 20(3): 248-252(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK403.003.htm
    [16]
    苏东林, 曾国奇, 刘焱, 等. 运动目标RCS特性分析[J]. 北京航空航天大学学报, 2006, 32(12): 1413-1417. doi: 10.3969/j.issn.1001-5965.2006.12.005

    SU D L, ZENG G Q, LIU Y, et al. RCS study of moving radar targets[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(12): 1413-1417(in Chinese). doi: 10.3969/j.issn.1001-5965.2006.12.005
    [17]
    WANG J J, GUO L X, WEI Y W, et al. Application of the improved SBR-TSM based on MPI to EM scattering from multiple targets above a 3-D rough sea surface[J]. IEEE Antennas and Wireless Propagation Letters, 2022, 21(2): 411-415. doi: 10.1109/LAWP.2021.3134068
    [18]
    苏东林, 王宝发, 张采来. 目标外形拟合及雷达散射截面计算[J]. 北京航空航天大学学报, 1990(1): 101-108. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK199001019.htm

    SU D L, WANG B F, ZHANG C L. Contour mimicry of targets & radat cross section's calculation[J]. Journal of Beijing University of Aeronautics and Astronautics, 1990(1): 101-108(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK199001019.htm
    [19]
    王冰切, 苏东林, 张晓雷. 飞机表面绕射射线的寻迹方法[J]. 北京航空航天大学学报, 2007, 33(7): 785-788. doi: 10.3969/j.issn.1001-5965.2007.07.009

    WANG B Q, SU D L, ZHANG X L. Discrete ray path tracing on aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(7): 785-788(in Chinese). doi: 10.3969/j.issn.1001-5965.2007.07.009
    [20]
    李尧尧, 苏东林, 刘焱, 等. 高精度法矢下切割面自适应的凸曲面射线寻迹[J]. 北京航空航天大学学报, 2016, 42(12): 2632-2639. doi: 10.13700/j.bh.1001-5965.2016.0442

    LI Y Y, SU D L, LIU Y, et al. Convex surface ray tracing based on adaptive cutting surface adjustment under exact normal vector[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(12): 2632-2639(in Chinese). doi: 10.13700/j.bh.1001-5965.2016.0442
    [21]
    TZOULIS A, EIBERT T F. A hybrid FEBI-MLFMM-UTD method for numerical solutions of electromagnetic problems including arbitrarily shaped and electrically large objects[J]. IEEE Transactions on Antennas and Propagation, 2005, 53(10): 3358-3366. doi: 10.1109/TAP.2005.856348
    [22]
    KARAGOUNIS G, ZUTTER D D, GINSTE D V. A hybrid MLFMM-UTD method for the solution of very large 2-D electromagnetic problems[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(1): 224-234.
    [23]
    HUO J C, XU L, SHI X W, et al. An accelerated shooting and bouncing ray method based on GPU and virtual ray tube for fast RCS prediction[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(9): 1839-1843.
    [24]
    XIAO D H, GUO L X, LIU W, et al. Improved Gaussian process regression inspired by physical optics for the conducting target's RCS prediction[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(12): 2403-2407.
    [25]
    LIU Z, WANG L F, WEN Z D, et al. Multilevel scattering center and deep feature fusion learning framework for SAR target recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-14.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views(475) PDF downloads(84) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return