Citation: | MA Y T,SUN P,ZHANG J Y,et al. Aerial target automatic grouping method based on MDk-DPC[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3219-3229 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0797 |
Air target grouping is a popular topic for research in the area of combat scenario assessment and can be thought of as essentially an uncountable class clustering issue. Aiming at the unknown air battlefield environment, a MDk-DPC algorithm based on manifold distance and k-nearest neighbor sampling density is proposed from the perspective of clustering. First, manifold distance is introduced to replace Euclidean distance to increase the similarity of objects in the same manifold. Secondly, the target's local density is determined using the k-nearest neighbors method, allowing the local density to more accurately represent the distribution surrounding the targets. Finally, an adaptive cluster center selection method is proposed to automatically determine cluster centers, and the DPC algorithm is used to specify the remaining point categories to complete the clustering. Simulation experiments show that the proposed method has better clustering performance on both artificial synthetic datasets and UCI real datasets. At the same time, the feasibility and effectiveness of the method are verified by clustering the simulated air battlefield data.
[1] |
郭明. 关于智能化战争的基本认知[J]. 人民论坛·学术前沿, 2021(10): 14-21.
GUO M. Basic understandings of the intelligent wars[J]. Frontiers, 2021(10): 14-21(in Chinese).
|
[2] |
张绪亮, 张宏军, 綦秀利, 等. 基于改进K-means算法的陆战场机动目标分群方法[J]. 信息技术, 2016, 40(3): 128-131.
ZHANG X L, ZHANG H J, QI X L, et al. A clustering method of land battlefield maneuvering targets based on improved K-means algorithm[J]. Information Technology, 2016, 40(3): 128-131(in Chinese).
|
[3] |
詹环, 宋爱斌, 罗俊芝, 等. 基于混合属性无监督聚类的作战目标分群[J]. 火力与指挥控制, 2021, 46(12): 166-170. doi: 10.3969/j.issn.1002-0640.2021.12.026
ZHAN H, SONG A B, LUO J Z, et al. Operational system target grouping method based on mixed attribute unsupervised clustering[J]. Fire Control & Command Control, 2021, 46(12): 166-170(in Chinese). doi: 10.3969/j.issn.1002-0640.2021.12.026
|
[4] |
DUAN Y X, LIU C Y, LI S. Battlefield target grouping by a hybridization of an improved whale optimization algorithm and affinity propagation[J]. IEEE Access, 2021, 9: 46448-46461. doi: 10.1109/ACCESS.2021.3067729
|
[5] |
袁德平, 郑娟毅, 史浩山, 等. 一种多作战编队下的目标编群算法[J]. 计算机科学, 2016, 43(2): 235-238. doi: 10.11896/j.issn.1002-137X.2016.02.049
YUAN D P, ZHENG J Y, SHI H S, et al. Target grouping algorithm based on multiple combat formations[J]. Computer Science, 2016, 43(2): 235-238(in Chinese). doi: 10.11896/j.issn.1002-137X.2016.02.049
|
[6] |
ESTER M, KRIEGEL H, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]// Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, 1996: 226–231.
|
[7] |
RODRIGUEZ A, LAIO A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191): 1492-1496. doi: 10.1126/science.1242072
|
[8] |
闫孟达, 杨任农, 王新, 等. 改进cell密度聚类算法在空战目标分群中的应用[J]. 国防科技大学学报, 2021, 43(4): 108-117. doi: 10.11887/j.cn.202104014
YAN M D, YANG R N, WANG X, et al. Air combat target grouping based on improved CBSCAN algorithm[J]. Journal of National University of Defense Technology, 2021, 43(4): 108-117(in Chinese). doi: 10.11887/j.cn.202104014
|
[9] |
李伟楠, 章卫国, 史静平, 等. 基于M-CFSFDP算法的战场目标分群方法[J]. 西北工业大学学报, 2018, 36(6): 1121-1128. doi: 10.3969/j.issn.1000-2758.2018.06.013
LI W N, ZHANG W G, SHI J P, et al. A battlefield target grouping method based on M-CFSFDP algorithm[J]. Journal of Northwestern Polytechnical University, 2018, 36(6): 1121-1128(in Chinese). doi: 10.3969/j.issn.1000-2758.2018.06.013
|
[10] |
段同乐, 张冬宁. 二叉树多分类SVM在目标分群中的应用[J]. 无线电工程, 2015, 45(6): 88-91.
DUAN T L, ZHANG D N. Application of multiclass SVM based on binary tree in target grouping[J]. Radio Engineering, 2015, 45(6): 88-91(in Chinese).
|
[11] |
樊振华, 师本慧, 陈金勇, 等. 基于模糊ART划分的目标分群算法[J]. 无线电工程, 2017, 47(9): 27-31. doi: 10.3969/j.issn.1003-3106.2017.09.06
FAN Z H, SHI B H, CHEN J Y, et al. A fuzzy ART based target clustering algorithm[J]. Radio Engineering, 2017, 47(9): 27-31(in Chinese). doi: 10.3969/j.issn.1003-3106.2017.09.06
|
[12] |
陶宇, 蒋序平. 基于深度自编码网络的智能目标分群算法[J]. 指挥控制与仿真, 2020, 42(6): 52-58. doi: 10.3969/j.issn.1673-3819.2020.06.009
TAO Y, JIANG X P. Intelligent target clustering algorithm based on deep auto-encoder network[J]. Command Control & Simulation, 2020, 42(6): 52-58(in Chinese). doi: 10.3969/j.issn.1673-3819.2020.06.009
|
[13] |
WU Z H, LI C, ZHOU F, et al. A new weighted fuzzy C-means clustering approach considering between-cluster separability[J]. Journal of Intelligent & Fuzzy Systems, 2021, 40(1): 1017-1024.
|
[14] |
REHMAN A U, BELHAOUARI S B. Divide well to merge better: A novel clustering algorithm[J]. Pattern Recognition, 2022, 122: 108305. doi: 10.1016/j.patcog.2021.108305
|
[15] |
马萌. 基于流形距离的聚类算法研究及其应用[D]. 西安: 西安电子科技大学, 2010: 9-21.
MA M. The study and the application of clustering algorithm based on manifold distance[D]. Xi’an: Xidian University, 2010: 9-21(in Chinese).
|
[16] |
CAO X F, QIU B Z, LI X L, et al. Multidimensional balance-based cluster boundary detection for high-dimensional data[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(6): 1867-1880. doi: 10.1109/TNNLS.2018.2874458
|
[17] |
SAMET H. K-nearest neighbor finding using MaxNearestDist[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(2): 243-252. doi: 10.1109/TPAMI.2007.1182
|
[18] |
DAI Q Z, XIONG Z Y, XIE J, et al. A novel clustering algorithm based on the natural reverse nearest neighbor structure[J]. Information Systems, 2019, 84: 1-16. doi: 10.1016/j.is.2019.04.001
|
[19] |
XIE J, XIONG Z Y, ZHANG Y F, et al. Density core-based clustering algorithm with dynamic scanning radius[J]. Knowledge-Based Systems, 2018, 142: 58-70. doi: 10.1016/j.knosys.2017.11.025
|
[20] |
TONG W N, LIU S, GAO X Z. A density-peak-based clustering algorithm of automatically determining the number of clusters[J]. Neurocomputing, 2021, 458: 655-666. doi: 10.1016/j.neucom.2020.03.125
|
[21] |
ZHANG R L, SONG X H, YING S R, et al. CA-CSM: A novel clustering algorithm based on cluster center selection model[J]. Soft Computing, 2021, 25(13): 8015-8033. doi: 10.1007/s00500-021-05835-w
|