Citation: | CHANG Z N,HU M H,ZHANG Y,et al. A multi-objective optimal control trajectory optimization method for aircraft under wind influence[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3521-3531 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0836 |
The constraints of the 4D trajectory optimization problem under wind influence are complex, and the multi-objective 4D trajectory optimization model is difficult to solve. To this end, the modeling and solution of the multi-objective optimization problem of the vertical profile of the trajectory under a fixed horizontal flight path considering wind influence were studied based on the optimal control method. Firstly, the optimal trajectory control model was established with the objectives of minimizing flight time and flight fuel consumption. Then, a model solution method combining trapezoidal points with $\varepsilon \text{-} {\mathrm{constraint}} $ was designed, and a two-stage solution method was proposed especially for trajectory optimization under the flight scenario by altitude layer. Then, a 4D trajectory simulation model was established to verify the effect of trajectory optimization. Finally, the actual flight plan data of the long flight route was used as an example to analyze the performance of the algorithm, and two scenarios of flight at free altitude and flight by altitude layer were used to verify the effect of trajectory optimization. The experimental results show that the proposed model and algorithm can obtain better Pareto frontier solutions than the other two commonly used algorithms, and the two-stage solution method can obtain better frontier solutions in the flight scenario by altitude layer. In the frontier solutions obtained in the scenarios of flight at free altitude and flight by altitude layer, the lowest flight fuel consumption trajectories are reduced by 6.33% and 5.94%, respectively, compared with those of the flight plan simulation trajectories. The shortest flight time trajectory is 10.16% and 10.01% lower than that of the flight plan simulation trajectory.
[1] |
LEE C. Transport and climate change: A review[J]. Journal of Transport Geography, 2007, 15(5): 354-367. doi: 10.1016/j.jtrangeo.2006.11.008
|
[2] |
TEOH L E, KHOO H L. Green air transport system: an overview of issues, strategies and challenges[J]. KSCE Journal of Civil Engineering, 2016, 20(3): 1040-1052. doi: 10.1007/s12205-016-1670-3
|
[3] |
HAGELAUER P, MORA-CAMINO F. A soft dynamic programming approach for on-line aircraft 4D-trajectory optimization[J]. European Journal of Operational Research, 1998, 107(1): 87-95. doi: 10.1016/S0377-2217(97)00221-X
|
[4] |
RICHTER M, BITTNER M, RIECK M, et al. A non-cooperative bi-level optimal control problem formulation for noise minimal departure trajectories[C]//Proceedings of the 29th Congress of the International Council of the Aeronautical Sciences. St.Petersburg: ICAS, 2014: 7-12.
|
[5] |
TIAN Y, HE X Q, XU Y, et al. 4D trajectory optimization of commercial flight for green civil aviation[J]. IEEE Access, 2020, 8: 62815-62829. doi: 10.1109/ACCESS.2020.2984488
|
[6] |
MURRIETA-MENDOZA A, BOTEZ R. Lateral navigation optimization considering winds and temperatures for fixed altitude cruise using dijsktra’s algorithm[C]//Proceedings of the ASME International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers. New York: ASME, 2014: 1-9.
|
[7] |
刘苑. 主干航路路径规划的仿真优化方法研究[D]. 天津: 中国民航大学, 2019: 41-43.
LIU Y. Research on simulation optimization method for trunk route path planning[D]. Tianjin: Civil Aviation University of China, 2019: 41-43(in Chinese).
|
[8] |
LEGRAND K, PUECHMOREL S, DELAHAYE D, et al. Robust aircraft optimal trajectory in the presence of wind[J]. IEEE Aerospace and Electronic Systems Magazine, 2018, 33(11): 30-38. doi: 10.1109/MAES.2018.170050
|
[9] |
GONZÁLEZ-ARRIBAS D, SOLER M, SANJURJO-RIVO M. Robust aircraft trajectory planning under wind uncertainty using optimal control[J]. Journal of Guidance, Control, and Dynamics, 2018, 41(3): 673-688. doi: 10.2514/1.G002928
|
[10] |
吴丽娜, 王和平. 基于改进遗传算法的最快爬升航迹的优化分析[J]. 科学技术与工程, 2009, 9(10): 2669-2673.
WU L N, WANG H P. Analysis of fastest climb trajectory optimal based on an improved genetic algorithms[J]. Science Technology and Engineering, 2009, 9(10): 2669-2673 (in Chinese).
|
[11] |
GARDI A, SABATINI R, KISTAN T. Multiobjective 4D trajectory optimization for integrated avionics and air traffic management systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(1): 170-181. doi: 10.1109/TAES.2018.2849238
|
[12] |
杨磊, 李文博, 刘芳子, 等. 柔性空域结构下连续下降航迹多目标优化[J]. 航空学报, 2021, 42(2): 324157.
YANG L, LI W B, LIU F Z, et al. Multi-objective optimization of continuous descending trajectories in flexible airspace[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2): 324157 (in Chinese).
|
[13] |
PISANI D, ZAMMIT MANGION D, SABATINI R. City-pair trajectory optimization in the presence of winds using the GATAC framework[C]// Proceedings of the AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2013.
|
[14] |
谢华, 黎子弘, 杨磊, 等. 容量受限下城市对航班四维航迹优化[J]. 航空学报, 2022, 43(8): 325581.
XIE H, LI Z H, YANG L, et al. Optimization of four-dimensional trajectory of city pair with limited capacity[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 325581 (in Chinese).
|
[15] |
BEN A S, ZONG P. 3D path planning, routing algorithms and routing protocols for unmanned air vehicles: A review[J]. Aircraft Engineering and Aerospace Technology, 2019, 91(9): 1245-1255. doi: 10.1108/AEAT-01-2019-0023
|
[16] |
SIDIBÉ S, BOTEZ R M. Trajectory optimization of FMS-CMA 9000 by dynamic programming[C]// 60th Aeronautics Conference and AGM. Toronto: Canadian Aeronautics and Space Institate, 2013: 1-3.
|
[17] |
PATRÓN R S F, KESSACI A, BOTEZ R M. Horizontal flight trajectories optimisation for commercial aircraft through a flight management system[J]. The Aeronautical Journal, 2014, 118(1210): 1499-1518. doi: 10.1017/S0001924000010162
|
[18] |
BOUTTIER C, BABANDO O, GADAT S, et al. Adaptive simulated annealing with homogenization for aircraft trajectory optimization[C]//Operations Research Proceedings 2015. Berlin: Springer, 2017: 569-574.
|
[19] |
MURRIETA-MENDOZA A, RUIZ H, BOTEZ R M, et al. Vertical reference flight trajectory optimization with the particle swarm optimisation[C]//Proceedings of the 36th IASTED International Conference on Modelling, Identification and Control. Innsbrunck: ACTA Press, 2017: 848.
|
[20] |
CHAI R Q, SAVVARIS A, TSOURDOS A, et al. Overview of trajectory optimization techniques[M]// Design of Trajectory Optimization Approach for Space Maneuver Vehicle Skip Entry Problems. Berlin: Springer, 2019: 7-25.
|
[21] |
SIMORGH A, SOLER M, GONZÁLEZ-ARRIBAS D, et al. A comprehensive survey on climate optimal aircraft trajectory planning[J]. Aerospace, 2022, 9(3): 146. doi: 10.3390/aerospace9030146
|
[22] |
SABATINI R, MOORE T, HILL C, et al. Trajectory optimisation for avionics-based GNSS integrity augmentation system[C]//Proceedings of the IEEE/AIAA 35th Digital Avionics Systems Conference. Piscataway: IEEE Press, 2016: 1-10.
|
[23] |
DALMAU R, MELGOSA M, VILARDAGA S, et al. A fast and flexible aircraft trajectory predictor and optimiser for ATM research applications[C]//Proceedings of the 8th International Conference for Research in Air Transportation. Piscataway: IEEE Press, 2018: 1-8.
|
[24] |
DALMAU R, PRATS X, BAXLEY B. Using broadcast wind observations to update the optimal descent trajectory in real-time[J]. Journal of Air Transportation, 2020, 28(3): 82-92. doi: 10.2514/1.D0174
|
[25] |
World Meteorological Organization. Guidelines on ensemble prediction systems and forecasting[M]. Switzerland: World Meteorological Organization, 2012: 1.
|