Volume 50 Issue 11
Nov.  2024
Turn off MathJax
Article Contents
ZHANG S J,GE J H,MA Z,et al. Influence of gap between splitter plate and side wall on performance of TBCC exhaust system[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3553-3565 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0842
Citation: ZHANG S J,GE J H,MA Z,et al. Influence of gap between splitter plate and side wall on performance of TBCC exhaust system[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3553-3565 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0842

Influence of gap between splitter plate and side wall on performance of TBCC exhaust system

doi: 10.13700/j.bh.1001-5965.2022.0842
Funds:  National Science and Technology Major Project of the Ministry of Science and Technology of China (2019-II-0007-0027); China Postdoctoral Science Foundation (2022M721598)
More Information
  • Corresponding author: E-mail:xujl@nuaa.edu.cn
  • Received Date: 10 Oct 2022
  • Accepted Date: 17 Jan 2023
  • Available Online: 17 Feb 2023
  • Publish Date: 15 Feb 2023
  • In order to study the influence of the gap between splitter plate and side wall of a turbine-based combined cycle (TBCC) exhaust system on its performance, the numerical simulation method was used to analyze the influence of different gap lengths and widths on the performance parameters of the nozzle. Then, the influence of whether there was a gap between the turbine channel and the stamping channel under different working conditions on the nozzle performance was studied. The results show that when two channels of the nozzle are under-expanded, there is a gap between splitter plate and side wall. For the turbine channel with gas leakage, the thrust coefficient of the turbine channel decreases, and the lift increases with the increase in the gap length, while the thrust coefficient of the stamping channel has almost no change, but the lift increases. In addition, the influence of gap width change on nozzle performance is consistent with that of length. The research on different nozzle working conditions finds that the existence of gaps always reduces the thrust coefficient. When the relative width and length of the gap are 0.033 and 0.31, 2.8% of the gas leakage can cause more than 1% loss of the thrust coefficient.

     

  • loading
  • [1]
    王占学, 刘增文, 王鸣, 等. 涡轮基组合循环发动机技术发展趋势和应用前景[J]. 航空发动机, 2013, 39(3): 12-17. doi: 10.3969/j.issn.1672-3147.2013.03.003

    WANG Z X, LIU Z W, WANG M, et al. Future development and application prospect of turbine based combined cycle engine[J]. Aeroengine, 2013, 39(3): 12-17(in Chinese). doi: 10.3969/j.issn.1672-3147.2013.03.003
    [2]
    左林玄, 张辰琳, 王霄, 等. 高超声速飞机动力需求探讨[J]. 航空学报, 2021, 42(8): 525798.

    ZUO L X, ZHANG C L, WANG X, et al. Requirement of hypersonic aircraft power[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525798(in Chinese).
    [3]
    KOBAYASHI H, TANATSUGU N. Optimization method on TSTO spaceplane system powered by airbreather[C]// Proceedings of the 37th Joint Propulsion Conference and Exhibit. Reston: AIAA, 2001: AIAA2001-3965.
    [4]
    OUZTS P. Mode transition design considerations for an airbreathing combined-cycle hypersonic vehicle[C]// Proceedings of the 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2008: AIAA2008-2621.
    [5]
    BULMAN M, SIEBENHAAR A. Combined cycle propulsion: aerojet innovations for practical hypersonic vehicles[C]// Proceedings of the 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2011: AIAA2011-2397.
    [6]
    黄伟, 夏智勋. 美国高超声速飞行器技术研究进展及其启示[J]. 国防科技, 2011, 32(3): 17-20,25. doi: 10.3969/j.issn.1671-4547.2011.03.004

    HUANG W, XIA Z X. Research progress and apocalypses on the American hypersonic vehicle technology[J]. National Defense Science & Technology, 2011, 32(3): 17-20, 25(in Chinese). doi: 10.3969/j.issn.1671-4547.2011.03.004
    [7]
    刘晓波, 罗月培, 曾慧, 等. 国外TBCC关键技术及试验设备研究综述[J]. 燃气涡轮试验与研究, 2016, 29(4): 51-56. doi: 10.3969/j.issn.1672-2620.2016.04.011

    LIU X B, LUO Y P, ZENG H, et al. An overview of key technology and test facility for turbine-based combined cycle propulsion study overseas[J]. Gas Turbine Experiment and Research, 2016, 29(4): 51-56(in Chinese). doi: 10.3969/j.issn.1672-2620.2016.04.011
    [8]
    徐惊雷. 超燃冲压及TBCC组合循环发动机尾喷管设计方法研究进展[J]. 推进技术, 2018, 39(10): 2236-2251.

    XU J L. Research progress of nozzle design method for scramjet and turbine based combined cycle[J]. Journal of Propulsion Technology, 2018, 39(10): 2236-2251(in Chinese).
    [9]
    EDWARDS C, SMALL W, WEIDNER J, et al. Studies of scramjet/airframe integration techniques for hypersonic aircraft[C]// Proceedings of the 13th Aerospace Sciences Meeting. Reston: AIAA, 1975.
    [10]
    DEERE K, ASBURY S. An experimental and computational investigation of a translating throat single expansion-ramp nozzle[C]// Proceedings of the 32nd Joint Propulsion Conference and Exhibit. Reston: AIAA, 1996: AIAA1996-2540.
    [11]
    庞丽娜, 徐惊雷, 葛建辉. 超燃冲压发动机喷管下唇板可调方案[J]. 航空动力学报, 2015, 30(7): 1685-1690.

    PANG L N, XU J L, GE J H. Scramjet nozzle with adjustable cowl scheme[J]. Journal of Aerospace Power, 2015, 30(7): 1685-1690(in Chinese).
    [12]
    葛建辉, 徐惊雷, 庞丽娜, 等. Scramjet尾喷管几何调节方案的计算与实验研究[J]. 推进技术, 2013, 34(9): 1158-1164.

    GE J H, XU J L, PANG L N, et al. CFD and experimental investigation for an adjustable scramjet nozzle[J]. Journal of Propulsion Technology, 2013, 34(9): 1158-1164(in Chinese).
    [13]
    杨承宇, 张靖周, 单勇. 单边膨胀喷管红外辐射特性的数值模拟[J]. 航空学报, 2010, 31(10): 1919-1926.

    YANG C Y, ZHANG J Z, SHAN Y. Numerical simulation on infrared radiation characteristics of single expansion ramp nozzles[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(10): 1919-1926(in Chinese).
    [14]
    张堃元, 张荣学, 徐辉. 非对称大膨胀比喷管研究[J]. 推进技术, 2001, 22(5): 380-382. doi: 10.3321/j.issn:1001-4055.2001.05.008

    ZHANG K Y, ZHANG R X, XU H. Investigation of single expansion ramp nozzle[J]. Journal of Propulsion Technology, 2001, 22(5): 380-382(in Chinese). doi: 10.3321/j.issn:1001-4055.2001.05.008
    [15]
    刘爱华, 王占学. 二次流喷射对喷管流场性能的影响[J]. 推进技术, 2007, 28(2): 144-147. doi: 10.3321/j.issn:1001-4055.2007.02.008

    LIU A H, WANG Z X. Effect of secondary flow injection on flow field and performance of nozzle[J]. Journal of Propulsion Technology, 2007, 28(2): 144-147(in Chinese). doi: 10.3321/j.issn:1001-4055.2007.02.008
    [16]
    LV Z, XU J L, MO J W. Numerical investigation of improving the performance of a single expansion ramp nozzle at off-design conditions by secondary injection[J]. Acta Astronautica, 2017, 133: 233-243. doi: 10.1016/j.actaastro.2017.01.013
    [17]
    王庆伟, 张相毅, 徐学邈, 等. 射流角度对双缝射流喷管流场影响的研究[J]. 燃气涡轮试验与研究, 2006, 19(4): 27-29, 42. doi: 10.3969/j.issn.1672-2620.2006.04.006

    WANG Q W, ZHANG X Y, XU X M, et al. Investigation on the influence of multiple injection ports in a nozzle for fluidic thrust vectoring[J]. Gas Turbine Experiment and Research, 2006, 19(4): 27-29, 42(in Chinese). doi: 10.3969/j.issn.1672-2620.2006.04.006
    [18]
    张相毅, 王如根, 周敏, 等. 单缝和双缝射流注入对二元喷管推力矢量的影响[J]. 推进技术, 2007, 28(6): 629-632. doi: 10.3321/j.issn:1001-4055.2007.06.008

    ZHANG X Y, WANG R G, ZHOU M, et al. Effects of single and dual injection ports on thrust vector for 2D nozzle[J]. Journal of Propulsion Technology, 2007, 28(6): 629-632(in Chinese). doi: 10.3321/j.issn:1001-4055.2007.06.008
    [19]
    WAITHE K, DEERE K. An experimental and computational investigation of multiple injection ports in a convergent-divergent nozzle for fluidic thrust vectoring[C]// Proceedings of the 21st AIAA Applied Aerodynamics Conference. Reston: AIAA, 2003: AIAA2003-3802.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(22)  / Tables(6)

    Article Metrics

    Article views(176) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return