Volume 50 Issue 11
Nov.  2024
Turn off MathJax
Article Contents
XU W S,XU T Q,MA H X,et al. Dynamic characteristics of flexible micro-positioning platforms based on transfer matrix method[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3566-3577 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0845
Citation: XU W S,XU T Q,MA H X,et al. Dynamic characteristics of flexible micro-positioning platforms based on transfer matrix method[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3566-3577 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0845

Dynamic characteristics of flexible micro-positioning platforms based on transfer matrix method

doi: 10.13700/j.bh.1001-5965.2022.0845
Funds:  National Natural Science Foundation of China (51375209); The Six Talent Peaks Project in Jiangsu Province (ZBZZ-012); Program of Introducing Talents of Discipline to Universities (B18027); The Excellent Technology Innovation Team Fundation of Jiangsu Province (2019SK07)
More Information
  • Corresponding author: E-mail:caoyi@jiangnan.edu.cn
  • Received Date: 10 Oct 2022
  • Accepted Date: 02 Dec 2022
  • Available Online: 23 Dec 2022
  • Publish Date: 15 Dec 2022
  • With the development of precision micro-positioning technology, the research on dynamic characteristics of flexible micro-positioning platforms is necessary. As an effective method to analyze the dynamics of multi-body systems, the transfer matrix method (TMM) has the advantages of convenient modeling and high calculation accuracy. Therefore, a dynamics model of the micro-positioning platform was established based on TMM to analyze its dynamic characteristics. The basic idea of TMM was introduced, and the transfer equation of flexible mechanism was established. Its instantaneous dynamic response under arbitrary excitation was deduced. An XY flexible micro-positioning platform based on the flexible hinge and flexible beam was designed, and the transfer matrix of its branch chain and the whole platform was derived. Based on vibration theory, the transfer matrix of the main characteristic elements of the platform was derived. Finally, in order to verify the validity of the theoretical model, the natural frequency and instantaneous dynamic response of the platform were studied based on the TMM, finite element method (FEM), and equivalent mass method (EMM), respectively. The results show that the transfer matrix can be programmatically constructed based on the TMM to analyze the dynamic characteristics of the platform without establishing complicated dynamics equations. Compared with EMM, TMM can calculate the higher-order natural frequency of the platform. The maximum relative error between theoretical and simulated natural frequencies of the platform is just 2.4%, and the theoretical and simulated dynamic responses basically agree with each other, which proves the validity of the model based on TMM.

     

  • loading
  • [1]
    HOWELL L L. Compliant mechanisms[M]. New York: Wiley, 2001.
    [2]
    于靖军, 郝广波, 陈贵敏, 等. 柔性机构及其应用研究进展[J]. 机械工程学报, 2015, 51(13): 53-68. doi: 10.3901/JME.2015.13.053

    YU J J, HAO G B, CHEN G M, et al. State-of-art of compliant mechanisms and their applications[J]. Journal of Mechanical Engineering, 2015, 51(13): 53-68(in Chinese). doi: 10.3901/JME.2015.13.053
    [3]
    王萍萍, 刘磊. 柔性航天器高精度隔振与定向研究[J]. 宇航学报, 2012, 33(9): 1195-1202.

    WANG P P, LIU L. Research on high accuracy pointing of the flexible spacecraft with Stewart platform[J]. Journal of Astronautics, 2012, 33(9): 1195-1202(in Chinese).
    [4]
    刘璟龙, 张崇峰, 邹怀武, 等. 基于干扰观测器的柔性空间机器人在轨精细操作控制方法[J]. 航空学报, 2021, 42(1): 189-199.

    LIU J L, ZHANG C F, ZOU H W, et al. On-orbit precise operation control method for flexible joint space robots based on disturbance observer[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(1): 189-199(in Chinese).
    [5]
    ZHANG X Z, XU Q S. Design, fabrication and testing of a novel symmetrical 3-DOF large-stroke parallel micro/nano-positioning stage[J]. Robotics and Computer-Integrated Manufacturing, 2018, 54: 162-172. doi: 10.1016/j.rcim.2017.11.006
    [6]
    周睿, 周辉, 桂和利, 等. 基于柔性铰链的二自由度微动平台分析及优化[J]. 北京航空航天大学学报, 2018, 44(9): 1982-1990.

    ZHOU R, ZHOU H, GUI H L, et al. Analysis and optimization of 2-DOF micro-positioning stage based on flexible hinges[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(9): 1982-1990(in Chinese).
    [7]
    LIN C, CUI X H, CHENG K, et al. Design and analysis of 5-DOF micro/nano-positioning stage[J]. Journal of Software, 2012, 7(5): 1038-1044.
    [8]
    曹毅, 王保兴, 孟刚, 等. 大行程三平动柔性微定位平台的设计分析及优化[J]. 机械工程学报, 2020, 56(17): 71-81. doi: 10.3901/JME.2020.17.071

    CAO Y, WANG B X, MENG G, et al. Design analysis and optimization of large range spatial translational compliant micro-positioning stage[J]. Journal of Mechanical Engineering, 2020, 56(17): 71-81(in Chinese). doi: 10.3901/JME.2020.17.071
    [9]
    SCHIAVO F, VIGANÒ L, FERRETTI G. Object-oriented modelling of flexible beams[J]. Multibody System Dynamics, 2006, 15(3): 263-286. doi: 10.1007/s11044-006-9012-8
    [10]
    XU Q S. Design and implementation of large-range compliant micropositioning systems[M]. New York: Wiley, 2016.
    [11]
    于靖军, 毕树生, 宗光华, 等. 基于伪刚体模型法的全柔性机构位置分析[J]. 机械工程学报, 2002, 38(2): 75-78. doi: 10.3321/j.issn:0577-6686.2002.02.017

    YU J J, BI S S, ZONG G H, et al. Kinematics analysis of fully compliant mechanisms using the pseudo-rigid-body model[J]. Chinese Journal of Mechanical Engineering, 2002, 38(2): 75-78(in Chinese). doi: 10.3321/j.issn:0577-6686.2002.02.017
    [12]
    KOSEKI Y, TANIKAWA T, KOYACHI N, et al. Kinematic analysis of translational 3-DOF micro parallel mechanism using matrix method[C]// Proceedings of 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000). Piscataway: IEEE Press, 2002: 786-792.
    [13]
    LUO Y Q, LIU W Y. Analysis of the displacement of distributed compliant parallel-guiding mechanism considering parasitic rotation and deflection on the guiding plate[J]. Mechanism and Machine Theory, 2014, 80: 151-165. doi: 10.1016/j.mechmachtheory.2014.06.005
    [14]
    HOWELL L L, MIDHA A, NORTON T W. Evaluation of equivalent spring stiffness for use in a pseudo-rigid-body model of large-deflection compliant mechanisms[J]. Journal of Mechanical Design, 1996, 118(1): 126-131. doi: 10.1115/1.2826843
    [15]
    WU S L, SHAO Z X, SU H J, et al. An energy-based approach for kinetostatic modeling of general compliant mechanisms[J]. Mechanism and Machine Theory, 2019, 142: 103588. doi: 10.1016/j.mechmachtheory.2019.103588
    [16]
    曹毅, 孟刚, 居勇健, 等. 考虑伴生转动的大行程柔性微定位平台[J]. 航空学报, 2022, 43(7): 456-470. doi: 10.7527/j.issn.1000-6893.2022.7.hkxb202207035

    CAO Y, MENG G, JU Y J, et al. Large-stroke compliant micro-positioning stage considering parasitic rotation[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(7): 456-470(in Chinese). doi: 10.7527/j.issn.1000-6893.2022.7.hkxb202207035
    [17]
    LI Y M, HUANG J M, TANG H. A compliant parallel XY micromotion stage with complete kinematic decoupling[J]. IEEE Transactions on Automation Science and Engineering, 2012, 9(3): 538-553. doi: 10.1109/TASE.2012.2198466
    [18]
    SCHOTBORGH W O, KOKKELER F G M, TRAGTER H, et al. Dimensionless design graphs for flexure elements and a comparison between three flexure elements[J]. Precision Engineering, 2005, 29(1): 41-47. doi: 10.1016/j.precisioneng.2004.04.003
    [19]
    王雯静, 余跃庆. 基于有限元法的柔顺机构动力学分析[J]. 机械工程学报, 2010, 46(9): 79-86. doi: 10.3901/JME.2010.09.079

    WANG W J, YU Y Q. Dynamic analysis of compliant mechanisms based on finite element method[J]. Journal of Mechanical Engineering, 2010, 46(9): 79-86(in Chinese). doi: 10.3901/JME.2010.09.079
    [20]
    ZHANG Z G, ZHOU X, FANG Z P. Dynamic analysis of compliant mechanisms using absolute nodal coordinate formulation and geometrically exact beam theory[M]// Multibody Dynamics 2019. Cham: Springer International Publishing, 2019: 215-222.
    [21]
    芮筱亭. 多体系统传递矩阵法及其应用[M]. 北京: 科学出版社, 2008.

    RUI X T. Transfer matrix method of multibody system and its applications[M]. Beijing: Science Press, 2008(in Chinese).
    [22]
    RUI X T, WANG X, ZHOU Q B, et al. Transfer matrix method for multibody systems (Rui method) and its applications[J]. Science China Technological Sciences, 2019, 62(5): 712-720. doi: 10.1007/s11431-018-9425-x
    [23]
    郑洋洋, 宫金良, 张彦斐. 基于传递矩阵法的柔性杠杆放大机构刚度分析[J]. 北京航空航天大学学报, 2017, 43(4): 849-856.

    ZHENG Y Y, GONG J L, ZHANG Y F. Stiffness analysis of a flexible lever magnifying mechanism based on transfer matrix method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(4): 849-856(in Chinese).
    [24]
    姚颂, 芮筱亭, 王景弘. 直升机悬停状态下的振动计算[J]. 哈尔滨工业大学学报, 2021, 53(6): 104-111. doi: 10.11918/201908100

    YAO S, RUI X T, WANG J H. Calculation of helicopter vibration in hovering state[J]. Journal of Harbin Institute of Technology, 2021, 53(6): 104-111(in Chinese). doi: 10.11918/201908100
    [25]
    DU Y S, LI T M, GAO G H. Dynamic analysis of a flexure-based compliant stage[J]. Journal of Mechanical Science and Technology, 2018, 32(11): 5223-5231. doi: 10.1007/s12206-018-1020-0
    [26]
    HU J F, WEN T, HE J K. Dynamics of compliant mechanisms using transfer matrix method[J]. International Journal of Precision Engineering and Manufacturing, 2020, 21(11): 2173-2189. doi: 10.1007/s12541-020-00395-9
    [27]
    WANG T W, LI Y Z, ZHANG Y X, et al. Design of a flexure-based parallel XY micropositioning stage with millimeter workspace and high bandwidth[J]. Sensors and Actuators A: Physical, 2021, 331: 112899. doi: 10.1016/j.sna.2021.112899
    [28]
    HOPKINS J B, CULPEPPER M L. Synthesis of multi-degree of freedom, parallel flexure system concepts via Freedom and Constraint Topology (FACT)–Part I: Principles[J]. Precision Engineering, 2010, 34(2): 259-270. doi: 10.1016/j.precisioneng.2009.06.008
    [29]
    LING M X, CAO J Y, HOWELL L L, et al. Kinetostatic modeling of complex compliant mechanisms with serial-parallel substructures: a semi-analytical matrix displacement method[J]. Mechanism and Machine Theory, 2018, 125: 169-184. doi: 10.1016/j.mechmachtheory.2018.03.014
    [30]
    LING M X, CAO J Y, PEHRSON N. Kinetostatic and dynamic analyses of planar compliant mechanisms via a two-port dynamic stiffness model[J]. Precision Engineering, 2019, 57: 149-161. doi: 10.1016/j.precisioneng.2019.04.004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article Metrics

    Article views(214) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return