Citation: | WANG P,ZHAO S L,CHEN W C. Cooperative interception strategy for midcourse guidance of GPI based on online prediction of reachable area[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3463-3476 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0856 |
To address the challenges of intercepting a hypersonic glide target in near space with significant maneuverability but ambiguous maneuver intention, this paper proposes a cooperative interception strategy for the midcourse guidance phase of a gliding phase interceptor (GPI), based on online prediction of an accessible area. First, based on the analytical solution of gliding trajectory, the online estimation method of lateral reach area is given. Next, polynomial fitting and back propagation (BP) neural network are used to offer an online strategy for GPI that predicts the area of reachable range under normal effort. The analytical solution is used to estimate the lateral reachable area. Finally, the interception arc and firing data can be determined under the concept of cooperative interception. Interception simulation and analysis verify that the cooperative interception strategy can effectively deal with the reversal maneuver of a hypersonic gliding target.
[1] |
雷虎民, 骆长鑫, 周池军, 等. 临近空间防御作战拦截弹制导与控制关键技术综述[J]. 航空兵器, 2021, 28(2): 1-10. doi: 10.12132/ISSN.1673-5048.2021.0070
LEI H M, LUO C X, ZHOU C J, et al. Summary of key technologies of interceptor guidance and control in near space defense operations[J]. Aero Weaponry, 2021, 28(2): 1-10(in Chinese). doi: 10.12132/ISSN.1673-5048.2021.0070
|
[2] |
杨阳, 李昌玺, 黄兴龙, 等. 美国高超声速武器防御举措及特点分析[J]. 飞航导弹, 2019(9): 20-24.
YANG Y, LI C X, HUANG X L, et al. Defense measures and characteristics analysis of hypersonic weapons in the United States[J]. Aerodynamic Missile Journal, 2019(9): 20-24(in Chinese).
|
[3] |
赵良玉, 雍恩米, 王波兰. 反临近空间高超声速飞行器若干研究进展[J]. 宇航学报, 2020, 41(10): 1239-1250. doi: 10.3873/j.issn.1000-1328.2020.10.001
ZHAO L Y, YONG E M, WANG B L. Some achievements on interception of near space hypersonic vehicles[J]. Journal of Astronautics, 2020, 41(10): 1239-1250(in Chinese). doi: 10.3873/j.issn.1000-1328.2020.10.001
|
[4] |
赵杰, 王君, 张大元, 等. 反临近空间高超声速飞行器中末交接视角研究[J]. 飞行力学, 2015, 33(3): 253-256.
ZHAO J, WANG J, ZHANG D Y, et al. Visual angle research for midcourse and terminal guidance hand-over of near space hypersonic vehicles[J]. Flight Dynamics, 2015, 33(3): 253-256(in Chinese).
|
[5] |
李爽, 江涌, 张奕群, 等. 基于虚拟目标的大气层内拦截弹中制导律研究[J]. 航天控制, 2013, 31(3): 40-44. doi: 10.3969/j.issn.1006-3242.2013.03.008
LI S, JIANG Y, ZHANG Y Q, et al. Research on midcourse guidance law for interceptor based on virtual target[J]. Aerospace Control, 2013, 31(3): 40-44(in Chinese). doi: 10.3969/j.issn.1006-3242.2013.03.008
|
[6] |
张荣升, 陈万春. THAAD增程型拦截弹预测制导方法[J]. 北京航空航天大学学报, 2021, 47(4): 863-874.
ZHANG R S, CHEN W C. Predictive guidance method of THAAD-ER interceptor[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(4): 863-874(in Chinese).
|
[7] |
肖翔, 杨业, 郭涛, 等. 升力式再入飞行器两种可达区域计算方法的探讨[J]. 航天控制, 2015, 33(2): 39-43. doi: 10.3969/j.issn.1006-3242.2015.02.007
XIAO X, YANG Y, GUO T, et al. Discussion of two algorithms for generating landing footprint for lifting reentry vehicles[J]. Aerospace Control, 2015, 33(2): 39-43(in Chinese). doi: 10.3969/j.issn.1006-3242.2015.02.007
|
[8] |
张凯, 熊家军. 滑翔式高超声速目标可达区域计算方法[J]. 现代防御技术, 2017, 45(2): 67-73. doi: 10.3969/j.issn.1009-086x.2017.02.0010
ZHANG K, XIONG J J. Algorithm of footprint area for gliding hypersonic target[J]. Modern Defence Technology, 2017, 45(2): 67-73(in Chinese). doi: 10.3969/j.issn.1009-086x.2017.02.0010
|
[9] |
吴楠, 王锋, 赵敏, 等. 高超声速滑翔再入飞行器的可达区快速预测[J]. 国防科技大学学报, 2021, 43(1): 1-6. doi: 10.11887/j.cn.202101001
WU N, WANG F, ZHAO M, et al. Fast prediction for footprint of hypersonic glide reentry vehicle[J]. Journal of National University of Defense Technology, 2021, 43(1): 1-6(in Chinese). doi: 10.11887/j.cn.202101001
|
[10] |
魏明英, 崔正达, 李运迁. 多弹协同拦截综述与展望[J]. 航空学报, 2020, 41(S1): 723804.
WEI M Y, CUI Z D, LI Y Q. Review and prospect of multi-missile cooperative interception[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S1): 723804(in Chinese).
|
[11] |
宋俊红, 宋申民, 徐胜利. 一种拦截机动目标的多导弹协同制导律[J]. 宇航学报, 2016, 37(12): 1306-1314. doi: 10.3873/j.issn.1000-1328.2016.12.005
SONG J H, SONG S M, XU S L. A cooperative guidance law for multiple missiles to intercept maneuvering target[J]. Journal of Astronautics, 2016, 37(12): 1306-1314(in Chinese). doi: 10.3873/j.issn.1000-1328.2016.12.005
|
[12] |
赵启伦, 陈建, 董希旺, 等. 拦截高超声速目标的异类导弹协同制导律[J]. 航空学报, 2016, 37(3): 936-948.
ZHAO Q L, CHEN J, DONG X W, et al. Cooperative guidance law for heterogeneous missiles intercepting hypersonic weapon[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3): 936-948(in Chinese).
|
[13] |
王子建. 多目标拦截器协同拦截决策方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2020: 57-62.
WANG Z J. Research on decision-making method of multi-target interceptor cooperative interception[D]. Harbin: Harbin Institute of Technology, 2020: 57-62(in Chinese).
|
[14] |
王龙. 基于区域覆盖的多飞行器协同拦截优化设计方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2018: 101-110.
WANG L. Study on optimization and design approach for mutiple flight vehicles cooperative interception based on area coverage[D]. Harbin: Harbin Institute of Technology, 2018: 101-110(in Chinese).
|
[15] |
于江龙, 董希旺, 李清东, 等. 拦截机动目标的分布式协同围捕制导方法[J]. 航空学报, 2022, 43(9): 325817. doi: 10.7527/j.issn.1000-6893.2022.9.hkxb202209035
YU J L, DONG X W, LI Q D, et al. Distributed cooperative encirclement hunting guidance method for intercepting maneuvering target[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 325817(in Chinese). doi: 10.7527/j.issn.1000-6893.2022.9.hkxb202209035
|
[16] |
PHILLIPS T H. A common aero vehicle (CAV) model, description, and employment glide [R]. Arlingtion: Schafer Corporation for AFRL and AFSPC, 2003: 1-12.
|
[17] |
ZHANG K N, CHEN W C. Reentry vehicle constrained trajectory optimization[C]//Proceedings of the 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2011: 2231.
|
[18] |
YU W B, CHEN W C. Entry guidance with real-time planning of reference based on analytical solutions[J]. Advances in Space Research, 2015, 55(9): 2325-2345. doi: 10.1016/j.asr.2015.02.002
|
[19] |
赵石磊, 陈万春, 杨良, 等. 大气层内助推段广义标控脱靶量解析制导律[J]. 系统工程与电子技术, 2023, 45(7): 2150-2157.
ZHAO S L, CHEN W C, YANG L, et al. Analytical generalized nominal effort miss guidance law for endo-atmosphere boost phase[J]. Systems Engineering and Electronics, 2023, 45(7): 2150-2157(in Chinese).
|
[20] |
RUMELHART D E, MCCLELLAND J L. Parallel distributed processing: Explorations in the microstructure of cognition: Psychological and biological models[M]. Cambridge: MIT Press, 1987. doi: 10.1038/323533a0
|
[21] |
ZHAO S L, CHEN W C, YANG L. Endoatmospheric ascent optimal guidance with analytical nonlinear trajectory prediction[J]. International Journal of Aerospace Engineering, 2022, 2022: 5729335.
|
[22] |
GLAZEBROOK K, WASHBURN A. Shoot-look-shoot: A review and extension[J]. Operations Research, 2004, 52(3): 454-463. doi: 10.1287/opre.1030.0086
|
[23] |
PRYLUK R, SHIMA T, GOLAN O M. Shoot-shoot-look for an air defense system[J]. IEEE Systems Journal, 2016, 10(1): 151-161. doi: 10.1109/JSYST.2014.2344755
|
[1] | LI Haojian, LI Kebo, LIANG Yangang. Many on Many Energy Optimal Task Allocation Method Based on Interception Capture Region[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0330 |
[2] | MA S H,ZHANG D,WANG M Y,et al. Directed interactive topology optimization design for multi-agent affine formation maneuver control[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1367-1376 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0180. |
[3] | TAN C,YU P,LI B,et al. Pressure cascade control of brake-by-wire unit based on direct drive pump-valve cooperative[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1163-1171 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0216. |
[4] | PANG B W,ZHU J W,BAO W M,et al. High dynamic cooperative topology online optimization and distributed guidance method[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):333-339 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.1025. |
[5] | DONG J C,GAO Q H,LIU Z H. Planar motion control of distributed-driven vehicles considering dynamic hysteresis[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3842-3853 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0887. |
[6] | ZHAI You-hong, LI Chun-tao, SU Zi-kang, LI Xue-bing. Neural network incremental dynamic inversion target drone somersault maneuver control[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0690 |
[7] | YAN Kun, ZHAO Jin-ze, CHEN Chao-bo, GAO Song, CAO Kai. Neural network-based fault tolerant control for unmanned helicopter with multiple actuator faults[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0699 |
[8] | LIU S Y,GAO J,SUN K W. Analysis of energy receiving by rigid cell array of solar airship[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3542-3552 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0820. |
[9] | ZHANG S,HAN X W,LI R P,et al. Improved remote regulated power supply control scheme in improved flyback converter[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1229-1239 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0458. |
[10] | YANG X X,JIANG Z J,ZHANG Y,et al. Distributed cooperative guidance strategy based on virtual negotiation and rolling horizon optimization[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):61-76 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0174. |
[11] | ZHANG Q C,WANG L,XI J X,et al. Tracking control of unmanned aerial vehicle swarms with leader-following double formation[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2331-2342 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0607. |
[12] | QIN M X,WANG Z,LI H L,et al. Obstacle avoidance control of UAV formation based on distributed model prediction[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1969-1981 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0509. |
[13] | SHI T X,CHEN L S,LI T S,et al. Distributed adaptive anti-disturbance control for power systems based on multi-agents[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1685-1692 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0496. |
[14] | SHI X S,LIN Z Y. Fixed-time distributed convex algorithm over second-order multi-agent systems under bounded disturbances[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2951-2959 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0060. |
[15] | CHENG Yi, ZHAO Jin-rui, HUANG Shui-lin, YU Zhi-hao, DENG Xu-dong. Research on dynamic characteristics of distributed multi-rotor/tilting wing aeroelastic coupling[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0253 |
[16] | HAN X,WANG Y X,CHENG X C,et al. A decentralized multi-sensor fusion estimator using finite memory buffers[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):335-343 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0240. |
[17] | ZHAO G R,GU H L,HAN X,et al. NNS distributed fusion estimator under multiple network constraints[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):229-241 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0225. |
[18] | WANG S Y,ZHANG J,YANG L Y. Attitude control law based on L1-ITD for a tail-sitter UAV[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2501-2509 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0681. |
[19] | DENG Xiao-long, GAO Xian-zhong, YANG Min-sheng, WANG Yu-jie, ZHU Bing-jie. Energy influence study of stages in cruise profile for near space solar powered unmanned aerial vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2022.0789 |
[20] | HU Yan-peng, GUO Jin, ZHOU Meng, WANG Xiang-yu. Research on energy management of solar powered UAV based on energy closed-loop[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2022.0749 |