Citation: | WANG T H,WANG Y R,WEI D S. Time-domain random vibration analysis method of pipeline based on time-frequency conversion[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3495-3506 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0859 |
Characteristics of damping structures are essential for pipeline vibration design. In traditional random vibration analysis, it is currently challenging to take nonlinear variables caused by damping structure into account. Based on the theory of time-frequency conversion, this paper proposes a time-domain dynamic analysis method that converts random vibration load spectrum into a time-domain vibration signal satisfying Gaussian distribution by using the time-domain randomization method. First, using a simple beam model, the reliability of the time-domain analysis method was demonstrated by comparing random vibration results in frequency-domain and time-domain analysis. Notably, there is a 5% discrepancy in the stress root mean square error between the two approaches. In addition, the difference between the time-domain method and the frequency-domain method is analyzed for the actual pipeline structure, and the advantage of the time-domain method in practical design is proved by calculating the equivalent damping ratio. Thereafter, it was analyzed that the influence of friction coefficient, preload of damping clamp and different clamp configurations on pipeline vibration by applying the time-domain analysis method. The results indicate that the configuration and preload have a greater influence on vibration, but the friction coefficient has a smaller influence. It is evident from the aforementioned analysis that the time-domain random vibration analysis method's parameter setting is more adaptable, allowing for a more thorough investigation of the effects of different structural parameters on pipeline vibration and an improvement in the damping structure's design efficiency.
[1] |
王帅, 张明明, 刘桢, 等. 预载荷作用下管路结构动强度评估方法[J]. 北京航空航天大学学报, 2016, 42(4): 745-750.
WANG S, ZHANG M M, LIU Z, et al. Dynamic strength valuation method of pipeline structures under preload[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(4): 745-750(in Chinese).
|
[2] |
李志强, 于洋, 刘艳, 等. 管路焊接结构的随机振动疲劳损伤分析[J]. 航天器环境工程, 2022, 39(2): 125-132.
LI Z Q, YU Y, LIU Y, et al. Analysis of fatigue damage of welded pipe structure under random vibration[J]. Spacecraft Environment Engineering, 2022, 39(2): 125-132(in Chinese).
|
[3] |
陈志英, 张兴森, 周平. 基于多点随机激励的发动机管路振动疲劳寿命分析[J]. 推进技术, 2019, 40(7): 1620-1627.
CHEN Z Y, ZHANG X S, ZHOU P. Vibration fatigue life analysis of engine piping system based on multi-point random excitation[J]. Journal of Propulsion Technology, 2019, 40(7): 1620-1627 (in Chinese).
|
[4] |
杜大华, 穆朋刚, 田川, 等. 液体火箭发动机管路断裂失效分析及动力优化[J]. 火箭推进, 2018, 44(3): 16-22.
DU D H, MU P G, TIAN C, et al. Failure analysis and dynamics optimization of pipeline for liquid rocket engine[J]. Journal of Rocket Propulsion, 2018, 44(3): 16-22(in Chinese).
|
[5] |
任朴林, 张帅, 于阳. 某型排气组件振动强度分析及优化[J]. 机械工程与自动化, 2019(6): 108-110.
REN P L, ZHANG S, YU Y. Vibration strength analysis and structural optimization for certain type of exhaust duct[J]. Mechanical Engineering & Automation, 2019(6): 108-110(in Chinese).
|
[6] |
URTHALER Y, BREAUX L E, MCNEILL S I, et al. A methodology for assessment of internal flow-induced vibration (FIV) in subsea piping systems[C]// Proceedings of the 30th international Conference on Ocean: Offshore and Arctic Engineering. New York: ASME Press, 2011: 1-13.
|
[7] |
徐培原, 刘伟. 发动机外部管路系统的卡箍布局多目标优化[J]. 航空发动机, 2020, 46(6): 46-52.
XU P Y, LIU W. Multi-objective optimization of clamps layout for engine external pipeline system[J]. Aeroengine, 2020, 46(6): 46-52 (in Chinese).
|
[8] |
郭阳. 飞机液压管路结构振动的影响因素研究[D]. 西安: 西安电子科技大学, 2021: 41-90.
GUO Y. Research on influencing factors of aircraft hydraulic pipeline structure vibration[D]. Xi’an: Xidian University, 2021: 41-90(in Chinese).
|
[9] |
石波, 戴进, 樊根民. 冲压发动机管路断裂故障分析及结构改进[J]. 火箭推进, 2021, 47(1): 43-48.
SHI B, DAI J, FAN G M. Failure analysis and structure improvement of pipeline fracture for ramjet engine[J]. Journal of Rocket Propulsion, 2021, 47(1): 43-48(in Chinese).
|
[10] |
SAZESH S, SHAMS S. Vibration analysis of cantilever pipe conveying fluid under distributed random excitation[J]. Journal of Fluids and Structures, 2019, 87: 84-101. doi: 10.1016/j.jfluidstructs.2019.03.018
|
[11] |
RAFIEE R, SHARIFI P. Stochastic failure analysis of composite pipes subjected to random excitation[J]. Construction and Building Materials, 2019, 224: 950-961. doi: 10.1016/j.conbuildmat.2019.07.107
|
[12] |
胡志强, 法庆衍, 洪宝林, 等. 随机振动试验应用技术[M]. 北京: 中国计量出版社, 1998: 125-128.
HU Z Q, FA Q Y, HONG B L, et al. Random vibration test application technology[M]. Beijing: Chinese Metrology Press, 1998: 125-128(in Chinese).
|
[13] |
刘茗. 金属橡胶减振器的谱响应研究[D]. 南京: 南京航空航天大学, 2014: 57-59.
LIU M. Research on spectrum response of metal rubber damper[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014: 57-59(in Chinese).
|
[14] |
王述成, 陈章位. 随机振动试验中时域随机化技术的研究[J]. 机械工程学报, 2005, 41(5): 230-233. doi: 10.3901/JME.2005.05.230
WANG S C, CHEN Z W. Research on the randomization of random test in vibration control system[J]. Chinese Journal of Mechanical Engineering, 2005, 41(5): 230-233(in Chinese). doi: 10.3901/JME.2005.05.230
|
[15] |
宋知用. MATLAB数字信号处理85个实用案例精讲: 入门到进阶[M]. 北京: 北京航空航天大学出版社, 2016: 422-441.
SONG Z Y. 85 practical cases of MATLAB digital signal processing: From entry to advanced[M]. Beijing: Beihang University of Press, 2016: 422-441(in Chinese).
|
[16] |
DASSAULT S. Dassault systemes simulia user assistance 2020: [EB/OL]. (2020-01-02)[2022-06-16]. https://help.3ds.com/HelpProductsDS.aspx.
|
[17] |
朱位秋. 随机振动[M]. 北京: 科学出版社, 1998: 40-61.
ZHU W Q. Random vibration[M]. Beijing: China Science Press, 1998: 40-61(in Chinese).
|
[18] |
欧进萍, 王光远. 结构随机振动[M]. 北京: 高等教育出版社, 1998: 48-69.
OU J P, WANG G Y. Random vibration of structures[M]. Beijing: Higher Education Press, 1998: 48-69(in Chinese).
|
[19] |
姜博宏. 航空发动机外部管路系统振动快速分析及卡箍布局优化的研究[D]. 沈阳: 东北大学, 2020: 27-30.
JIANG B H. Research on rapid vibration analysis and clamp layout optimization of aeroengine external piping system[D]. Shenyang: Northeastern University, 2020: 27-30(in Chinese).
|
[20] |
于锋礼. 钢丝网垫减振器的建模研究[D]. 南京: 南京航空航天大学, 2009: 9-19.
YU F L. Study on modeling of steel-net pad damper[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009: 9-19(in Chinese).
|