Volume 50 Issue 11
Nov.  2024
Turn off MathJax
Article Contents
LI P,CHEN J Q,DING M S,et al. Simulaton of therochemical nonequilibrium and rarefied-slip flows for hypersonic flight vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3391-3401 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0870
Citation: LI P,CHEN J Q,DING M S,et al. Simulaton of therochemical nonequilibrium and rarefied-slip flows for hypersonic flight vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3391-3401 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0870

Simulaton of therochemical nonequilibrium and rarefied-slip flows for hypersonic flight vehicles

doi: 10.13700/j.bh.1001-5965.2022.0870
Funds:  National Numerical Windtunnel Project; National Key Research and Development Program (2019YFA0405203)
More Information
  • Corresponding author: E-mail:chenjq@cardc.cn
  • Received Date: 30 Oct 2022
  • Accepted Date: 09 Dec 2022
  • Available Online: 10 Feb 2023
  • Publish Date: 07 Feb 2023
  • The rarefied slip effect has a significant impact on the aerodynamic characteristics of hypersonic vehicle. Based on HyFLOW software, velocity slip and temperature slip boundary conditions suitable for thermochemical nonequilibrium flows are constructed. Meanwhile, the rarefied slip flows over the usual hypersonic vehicles of the Orion reentry capsule, OREX experiment flight vehicle, and the Columbia OV102-like space shuttle are simulated, and the associated aerodynamic properties are also anticipated and studied. Research results indicate that the rarefied slip boundary model in HyFLOW software is reliable, and has high computational accuracy in predicting the aerodynamic and aerothermal characteristics related to coupling effects of thermochemical nonequilibrium and rarefied slip. It can meet the simulation application requirements of complex engineering configurations. In addition, the rarefied slip effect can significantly reduce the peak value of heat flux and its distribution area. The peak heat flow of the OV102-like space shuttle's nose is anticipated by the slip condition to be, at most, 45% less than that of the no-slip condition, and, at most, 20% less than that of the leading edge of the wing.

     

  • loading
  • [1]
    沈青. 稀薄气体动力学[M]. 北京: 国防工业出版社, 2003: 1-196.

    SHEN Q. Rarefied gas dynamics[M]. Beijing: National Defense Industry Press, 2003: 1-196(in Chinese).
    [2]
    梁杰, 李志辉, 杜波强, 等. 探月返回器稀薄气体热化学非平衡特性数值模拟[J]. 载人航天, 2015, 21(3): 295-302.

    LIANG J, LI Z H, DU B Q, et al. Numerical simulation of rarefied gas thermochemical nonequilibrium when lunar exploration vehicle re-entering into atmosphere[J]. Manned Spaceflight, 2015, 21(3): 295-302(in Chinese).
    [3]
    LOFTHOUSE A, SCALABRIN L, BOYD I. Velocity slip and temperature jump in hypersonic aerothermodynamics[C]//Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007.
    [4]
    LOFTHOUSE A J. Nonequilibrium hypersonic aerothermodynamics using the direct simulation Monte Carlo and Navier-Stokes models[D]. Ann Arbor: The University of Michigan, 2008: 1-72.
    [5]
    MOSS J, BOYLES K, GREENE F. Orion aerodynamics for hypersonic free molecular to continuum conditions[C]//Proceedings of the 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2006.
    [6]
    VOTTA R, SCHETTINO A, RANUZZI G, et al. Hypersonic low-density aerothermodynamics of orion-like exploration vehicle[J]. Journal of Spacecraft and Rockets, 2009, 46(4): 781-787. doi: 10.2514/1.42663
    [7]
    MORSA L, ZUPPARDI G, VOTTA R, et al. Influence of chemical models on heat flux for EXPERT and Orion capsules[J]. Journal of Aerospace Engineering, 2014, 228(6): 930-948. doi: 10.1177/0954410013483935
    [8]
    YAMAMOTO Y, YOSHIOKA M. CFD and FEM coupling analysis of OREX aerothermodynamic flight data[C]//Proceedings of the 30th Thermophysics Conference. Reston: AIAA, 1995.
    [9]
    GUPTA R, MOSS J, PRICE J. Assessment of thermochemical nonequilibrium and slip effects for Orbital Reentry Experiment (OREX)[C]//Proceedings of the 31st Thermophysics Conference. Reston: AIAA, 1996.
    [10]
    VLASOV V I, GORSHKOV A B. Comparison of the calculated results for hypersonic flow past blunt bodies with the OREX flight test data[J]. Fluid Dynamics, 2001, 36(5): 812-819. doi: 10.1023/A:1013033221093
    [11]
    李鹏, 陈坚强, 丁明松, 等. NNW-HyFLOW高超声速流动模拟软件框架设计[J]. 航空学报, 2021, 42(9): 625718.

    LI P, CHEN J Q, DING M S, et al. Framework design of NNW-HyFLOW hypersonic flow simulation software[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 625718(in Chinese).
    [12]
    李鹏, 陈坚强, 丁明松, 等. LENS风洞试验返回器模型气动热特性模拟[J]. 航空学报, 2021, 42(S1): 198-208.

    LI P, CHEN J Q, DING M S, et al. Simulation of aerodynamic and thermal characteristics of LENS wind tunnel test returner model[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(S1): 198-208(in Chinese).
    [13]
    ZOBY E V. Analysis of STS-2 experimental heating rates and transition data[J]. Journal of Spacecraft and Rockets, 1983, 20(3): 232-237. doi: 10.2514/3.25585
    [14]
    SCOTT C D. Effects of nonequilibrium and wall catalysis on Shuttle heat transfer[J]. Journal of Spacecraft and Rockets, 1985, 22(5): 489-499. doi: 10.2514/3.25059
    [15]
    YOON S, JAMESON A. A multigrid LU-SSOR scheme for approximate newton iteration applied to the euler equations: NASA-CR-179524[R]. Washton, D. C. : NASA, 1986.
    [16]
    GUPTA R N, YOS J M, THOMPSON R A, et al. A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30000K: NASA Reference Publication 1232[R]. Washton, D. C. : NASA, 1990.
    [17]
    董维中. 热化学非平衡效应对高超声速流动影响的数值计算与分析[D]. 北京: 北京航空航天大学, 1996: 1-206.

    DONG W Z. Numerical simulation and analysis of thermochemical nonequilibrium effects at hypersonic flow[D]. Beijing: Beihang University, 1996: 1-206(in Chinese).
    [18]
    郝佳傲. 高超声速热化学非平衡耦合效应的建模研究[D]. 北京: 北京航空航天大学, 2018: 1-148.

    HAO J A. Modeling of Thermochemical nonequilibrium coupling effects in hypersonic flows[D]. Beijing: Beihang University, 2018: 1-148(in Chinese).
    [19]
    王京盈. 高速高温流动的化学非平衡及热辐射耦合效应研究[D]. 北京: 北京航空航天大学, 2017: 1-165.

    WANG J Y. Numerical study on coupled effects of the chemical nonequilibrium and thermal radiation in high speed and high temperature flows[D]. Beijing: Beihang University, 2017: 1-165(in Chinese).
    [20]
    SURZHIKOV S, SHANG J. Kinetic models analysis for super-orbital aerophysics[C]//Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008.
    [21]
    KO W L, QUINN R D, GONG L, et al. Reentry heat transfer analysis of the space shuttle orbiter: 82N23491[R]. Washton, D. C. : NASA, 1982.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(3)

    Article Metrics

    Article views(270) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return