Volume 50 Issue 11
Nov.  2024
Turn off MathJax
Article Contents
CAI Y,SI Y H,WANG Y Z,et al. Design and application of EMD-ARIMA drift model for flexible gyro[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3434-3444 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0871
Citation: CAI Y,SI Y H,WANG Y Z,et al. Design and application of EMD-ARIMA drift model for flexible gyro[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3434-3444 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0871

Design and application of EMD-ARIMA drift model for flexible gyro

doi: 10.13700/j.bh.1001-5965.2022.0871
More Information
  • Corresponding author: E-mail:615596667@qq.com
  • Received Date: 30 Oct 2022
  • Accepted Date: 30 Dec 2022
  • Available Online: 06 Mar 2023
  • Publish Date: 27 Feb 2023
  • In order to reduce the drift rate of the flexible gyro and improve the precision of the flexible gyro, EMD-ARIMA drift model was proposed based on empirical mode decomposition (EMD) and autoregressive integrated moving average (ARIMA) signal processing tools. The outfield removal operator is designed to avoid the overshoot and undershoot problems in the EMD process. The identification of the intrinsic mode function (IMF) is discussed, and the principles for the use of IMF at various levels are formulated. By depending on technical staff to interpret autocorrelation and partial autocorrelation graphs and to implement the batch processing function of EMD-ARIMA modeling for multiple signals (or multi-order IMFs), the adaptive order optimization operator is intended to avoid ARIMA modelling. Comparing the reconstructed fitting signal with the original signal, the engineering practice shows that the drift rate of the final reconstructed fitting signal is 12.8% lower than that of the original signal. All the error sources of Allan variance are reduced. Meanwhile, the MAPE is 3.6×10−3, and the RMSE is 5.1×10−3. The drift model in flexible gyro drift modeling possesses the qualities of universality in many individuals, consistency in two ways, and repetition in one manner.

     

  • loading
  • [1]
    王亚辉, 李醒飞, 纪越, 等. 改进极大似然法动力调谐陀螺仪闭环辨识[J]. 纳米技术与精密工程, 2017, 15(6): 499-506.

    WANG Y H, LI X F, JI Y, et al. Dynamically tuned gyroscope closed-loop identification based on modified maximum likelihood method[J]. Nanotechnology and Precision Engineering, 2017, 15(6): 499-506(in Chinese).
    [2]
    柴栋栋, 宋仁银, 王吉顺. 基于ER-EMD的陀螺仪信号去噪方法[J]. 四川兵工学报, 2011, 32(12): 36-41.

    CHAI D D, SONG R Y, WANG J S. Denoising method of gyroscope signal based on ER-EMD[J]. Journal of Sichuan Ordnance, 2011, 32(12): 36-41(in Chinese).
    [3]
    吉世涛, 万彦辉, 裴纺霞, 等. 挠性陀螺随机漂移模型的神经网络辨识[J]. 导航与控制, 2003(4): 62-67.

    JI S T, WAN Y H, PEI F X, et al. Using neural network to identify DTG random drift model[J]. Navigation and Control, 2003(4): 62-67(in Chinese).
    [4]
    王世方, 余志勇, 王新国. 模糊神经网络在动调陀螺随机误差建模中的应用[J]. 弹箭与制导学报, 2008, 28(3): 55-58. doi: 10.3969/j.issn.1673-9728.2008.03.016

    WANG S F, YU Z Y, WANG X G. Random error model based on fuzzy network application to DTG[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2008, 28(3): 55-58(in Chinese). doi: 10.3969/j.issn.1673-9728.2008.03.016
    [5]
    刘洋, 李杰, 张德彪, 等. 一种基于变分模态分解和样本熵的MEMS陀螺去噪方法[J]. 仪表技术与传感器, 2021(6): 90-94.

    LIU Y, LI J, ZHANG D B, et al. MEMS gyroscope denoising method based on variational mode decomposition and sample entropy[J]. Instrument Technique and Sensor, 2021(6): 90-94(in Chinese).
    [6]
    史建伟, 李永伟. 基于VMD和CWT的MEMS陀螺仪输出降噪研究[J]. 计算机仿真, 2021, 38(5): 42-45. doi: 10.3969/j.issn.1006-9348.2021.05.009

    SHI J W, LI Y W. Research on noise reduction of MEMS gyroscope output based on VMD and CWT[J]. Computer Simulation, 2021, 38(5): 42-45(in Chinese). doi: 10.3969/j.issn.1006-9348.2021.05.009
    [7]
    张萌, 王虹, 吕东. MEMS陀螺仪随机误差分析与建模[J]. 电光与控制, 2022, 29(6): 68-71. doi: 10.3969/j.issn.1671-637X.2022.06.014

    ZHANG M, WANG H, LYU D. Random error of MEMS gyroscope: Analysis and modeling[J]. Electronics Optics & Control, 2022, 29(6): 68-71(in Chinese). doi: 10.3969/j.issn.1671-637X.2022.06.014
    [8]
    周百令. 动力调谐陀螺仪设计与制造[M]. 南京: 东南大学出版社, 2002.

    ZHOU B L. Design and manufacture of dynamically tune gyroscope[M]. Nanjing: Southeast University Press, 2002(in Chinese).
    [9]
    罗麟经, 杨军, 宋有山. 动力调谐陀螺仪与g2有关及谐振引起的漂移误差分析[J]. 战术导弹控制技术, 2003(2): 26-31. doi: 10.3969/j.issn.1009-1300-B.2003.02.006

    LUO L J, YANG J, SONG Y S. Analysis of the drift errors with related to g2 and resonance-induced for DTG[J]. Control Technology of Tactical Missile, 2003(2): 26-31(in Chinese). doi: 10.3969/j.issn.1009-1300-B.2003.02.006
    [10]
    张宁. 基于CEEMD阈值和相关系数原理的MEMS陀螺信号去噪方法[J]. 传感技术学报, 2018, 31(9): 1383-1388. doi: 10.3969/j.issn.1004-1699.2018.09.015

    ZHANG N. Signal de-noising method for MEMS gyroscope based on CEEMD threshold and correlation coefficient principle[J]. Chinese Journal of Sensors and Actuators, 2018, 31(9): 1383-1388(in Chinese). doi: 10.3969/j.issn.1004-1699.2018.09.015
    [11]
    HE J N, ZHONG Y, LI X F. Multi-scale prediction of MEMS gyroscope random drift based on EMD-SVR[J]. Journal of Measurement Science and Instrumentation, 2020, 11(3): 290-296.
    [12]
    王燕. 应用时间序列分析[M]. 6版. 北京: 中国人民大学出版社, 2022.

    WANG Y. Applied time series analysis[M]. 6th ed. Beijing: China Renmin University Press, 2022(in Chinese).
    [13]
    吴宗收, 汪立新, 李新三, 等. 一种改进PSO-ARMA半球谐振陀螺温度误差建模方法[J]. 北京航空航天大学学报, 2022, 48(6): 1050-1056.

    WU Z S, WANG L X, LI X S, et al. An improved PSO-ARMA method for temperature error modeling of hemispherical resonator gyroscope[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(6): 1050-1056(in Chinese).
    [14]
    刘明, 刘金辉, 陈金萌, 等. 基于改进EMD的MEMS陀螺仪降噪方法[J]. 传感技术学报, 2020, 33(5): 705-710. doi: 10.3969/j.issn.1004-1699.2020.05.014

    LIU M, LIU J H, CHEN J M, et al. MEMS gyroscope noise reduction method based on improved EMD[J]. Chinese Journal of Sensors and Actuators, 2020, 33(5): 705-710(in Chinese). doi: 10.3969/j.issn.1004-1699.2020.05.014
    [15]
    李文华, 汪立新, 沈强, 等. 基于EMD的MEMS陀螺仪随机漂移分析方法[J]. 北京航空航天大学学报, 2021, 47(9): 1927-1932.

    LI W H, WANG L X, SHEN Q, et al. Random drift analysis method of MEMS gyroscope based on EMD[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(9): 1927-1932(in Chinese).
    [16]
    王晨钢. 基于Shannon熵和EMD算法的MEMS陀螺仪信号降噪处理[J]. 电子设计工程, 2017, 25(10): 174-177. doi: 10.3969/j.issn.1674-6236.2017.10.043

    WANG C G. MEMS gyroscope signal denoise based on Shannon’s entropy and EMD[J]. Electronic Design Engineering, 2017, 25(10): 174-177(in Chinese). doi: 10.3969/j.issn.1674-6236.2017.10.043
    [17]
    丁明宽, 石志勇, 韩兰懿, 等. 基于EMD-DFA-小波阈值的MEMS陀螺信号去噪方法[J]. 火炮发射与控制学报, 2021, 42(2): 50-56.

    DING M K, SHI Z Y, HAN L Y, et al. MEMS gyroscope signal denoising method based on EMD-DFA-wavelet threshold[J]. Journal of Gun Launch & Control, 2021, 42(2): 50-56(in Chinese).
    [18]
    李成, 刘洁瑜, 张斌. 半球谐振陀螺仪随机漂移数学模型研究[J]. 压电与声光, 2012, 34(5): 695-698. doi: 10.3969/j.issn.1004-2474.2012.05.013

    LI C, LIU J Y, ZHANG B. Research on mathematic model of random drift of hemispherical resonant gyro[J]. Piezoelectrics & Acoustooptics, 2012, 34(5): 695-698(in Chinese). doi: 10.3969/j.issn.1004-2474.2012.05.013
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(6)

    Article Metrics

    Article views(235) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return