| Citation: | ZHAO W J,HAN A J,MENG F Y,et al. Flexible crystalline silicon heterojunction solar cells for near-space applications[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(8):2642-2651 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.1001 |
Aiming at the urgent demand for energy-system for high-altitude spacecraft in near-space, an ultra-thin flexible silicon heterojunction (SHJ) solar cell with a thickness of less than 100 μm was developed based on the double-sided symmetrical structure and the characteristics of the low-temperature process. By examining, evaluating, and contrasting the mechanical, thermal, and electrical characteristics of the flexible modules' packaging materials, the encapsulation structure and technology of the modules were established, and silicon heterojunction photovoltaic modules that are both flexible and efficient and appropriate for high-altitude aircraft in near space were created. The dependability of SHJ high weather resistance and high stability flexible modules, which were extensively used in high-altitude UAVs and stratospheric airships, was investigated in accordance with the needs of environmental adaptation in near space. At the same time, according to different application environments, new components are designed and their performance is compared. The solar cell modules with a conversion efficiency of 20.75% show almost no degradation after environmental reliability testing, making them completely suitable for the complex and variable near-space environment.
| [1] |
WANG W Q, CAI J Y, PENG Q C. Near-space microwave radar remote sensing: potentials and challenge analysis[J]. Remote Sensing, 2010, 2(3): 717-739. doi: 10.3390/rs2030717
|
| [2] |
WANG W Q. Near-space vehicles: supply a gap between satellites and airplanes for remote sensing[J]. IEEE Aerospace and Electronic Systems Magazine, 2011, 26(4): 4-9. doi: 10.1109/MAES.2011.5763337
|
| [3] |
XU Y M, ZHU W Y, LI J, et al. Improvement of endurance performance for high-altitude solar-powered airships: a review[J]. Acta Astronautica, 2020, 167: 245-259. doi: 10.1016/j.actaastro.2019.11.021
|
| [4] |
YIN S, ZHU M, LIANG H Q. Multi-disciplinary design optimization with variable complexity modeling for a stratosphere airship[J]. Chinese Journal of Aeronautics, 2019, 32(5): 1244-1255. doi: 10.1016/j.cja.2019.03.003
|
| [5] |
曲鹏, 王寅. 太阳能无人机电源系统的发展现状与展望[J]. 电源技术, 2015, 39(4): 864-866. doi: 10.3969/j.issn.1002-087X.2015.04.083
QU P, WANG Y. Development status and prospect of solar power systems for UAVs[J]. Chinese Journal of Power Sources, 2015, 39(4): 864-866(in Chinese). doi: 10.3969/j.issn.1002-087X.2015.04.083
|
| [6] |
潘振, 呼文韬, 王寅, 等. 适用于太阳能飞行器的单晶硅太阳电池[J]. 电源技术, 2016, 40(8): 1722-1725. doi: 10.3969/j.issn.1002-087X.2016.08.059
PAN Z, HU W T, WANG Y, et al. Monocrystalline Si solar cells suitable for solar aerial vehicle[J]. Chinese Journal of Power Sources, 2016, 40(8): 1722-1725(in Chinese). doi: 10.3969/j.issn.1002-087X.2016.08.059
|
| [7] |
STROBL G F X, EBEL L, FUHRMANN D, et al. Development of lightweight space solar cells with 30% efficiency at end-of-life[C]//Proceedings of the IEEE 40th Photovoltaic Specialist Conference. Piscataway: IEEE Press, 2014: 3595-3600.
|
| [8] |
邹帅, 吴成坤, 徐磊, 等. 全角度陷光的微-纳复合绒面单晶PERC太阳电池[J]. 太阳能学报, 2022, 43(7): 134-139.
ZOU S, WU C K, XU L, et al. All-angled light-trapped micro-nano hybrid textured mono-Si perc solar cells[J]. Acta Energiae Solaris Sinica, 2022, 43(7): 134-139(in Chinese).
|
| [9] |
RAZZAQ A, ALLEN T G, LIU W Z, et al. Silicon heterojunction solar cells: techno-economic assessment and opportunities[J]. Joule, 2022, 6(3): 514-542. doi: 10.1016/j.joule.2022.02.009
|
| [10] |
仇恒抗, 姜德鹏, 杨琴, 等. 32%效率三结砷化镓太阳电池设计与在轨应用[J]. 电源技术, 2022, 46(5): 545-548. doi: 10.3969/j.issn.1002-087X.2022.05.019
QIU H K, JIANG D P, YANG Q, et al. Design and application in orbit 32% efficiency triple junction GaAs solar cell[J]. Chinese Journal of Power Sources, 2022, 46(5): 545-548(in Chinese). doi: 10.3969/j.issn.1002-087X.2022.05.019
|
| [11] |
GEISZ J F, FRIEDMAN D J, WARD J S, et al. 40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions[J]. Applied Physics Letters, 2008, 93(12): 123505. doi: 10.1063/1.2988497
|
| [12] |
铁剑锐, 李晓东, 孙希鹏. 高效超薄空间用三结砷化镓太阳电池研制[J]. 电源技术, 2018, 42(8): 1174-1176. doi: 10.3969/j.issn.1002-087X.2018.08.025
TIE J R, LI X D, SUN X P. High-efficiency and ultra-thin triple-junction space solar cell[J]. Chinese Journal of Power Sources, 2018, 42(8): 1174-1176(in Chinese). doi: 10.3969/j.issn.1002-087X.2018.08.025
|
| [13] |
YAMAGUCHI M, DIMROTH F, EKINS-DAUKES N J, et al. Overview and loss analysis of III–V single-junction and multi-junction solar cells[J]. EPJ Photovoltaics, 2022, 13: 22. doi: 10.1051/epjpv/2022020
|
| [14] |
DENG W W, CHEN D M, XIONG Z, et al. 20.8% PERC solar cell on 156 mm × 156 mm P-type multicrystalline silicon substrate[J]. IEEE Journal of Photovoltaics, 2016, 6(1): 3-9. doi: 10.1109/JPHOTOV.2015.2489881
|
| [15] |
SONG L H, HU Z C, LIN D H, et al. Progress of hydrogenation engineering in crystalline silicon solar cells: a review[J]. Journal of Physics D Applied Physics, 2022, 55(45): 453002. doi: 10.1088/1361-6463/ac9066
|
| [16] |
WANG P, LI G F, WANG M, et al. Numerical study of mono-crystalline silicon solar cells with passivated emitter and rear contact configuration for the efficiency beyond 24% based on mass production technology[J]. Journal of Semiconductors, 2020, 41(6): 062701. doi: 10.1088/1674-4926/41/6/062701
|
| [17] |
TAGUCHI M, KAWAMOTO K, TSUGE S, et al. HITTM cells: high-efficiency crystalline Si cells with novel structure[J]. Progress in Photovoltaics: Research and Applications, 2000, 8(5): 503-513. doi: 10.1002/1099-159X(200009/10)8:5<503::AID-PIP347>3.0.CO;2-G
|
| [18] |
MASUKO K, SHIGEMATSU M, HASHIGUCHI T, et al. Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell[J]. IEEE Journal of Photovoltaics, 2014, 4(6): 1433-1435. doi: 10.1109/JPHOTOV.2014.2352151
|
| [19] |
PARK H, LEE Y J, PARK J, et al. Front and back TCO research review of a-Si/c-Si heterojunction with intrinsic thin layer (HIT) solar cell[J]. Transactions on Electrical and Electronic Materials, 2018, 19(3): 165-172. doi: 10.1007/s42341-018-0026-8
|
| [20] |
DU J L, MENG F Y, FU H X, et al. Selective rounding for pyramid peaks and valleys improves the performance of SHJ solar cells[J]. Energy Science & Engineering, 2021, 9(9): 1306-1312.
|
| [21] |
HUANG W, SHI J H, LIU Y Y, et al. High-performance Ti and W Co-doped indium oxide films for silicon heterojunction solar cells prepared by reactive plasma deposition[J]. Journal of Power Sources, 2021, 506: 230101.
|
| [22] |
MENG F Y, SHI J H, LIU Z X, et al. High mobility transparent conductive W-doped In2O3 thin films prepared at low substrate temperature and its application to solar cells[J]. Solar Energy Materials and Solar Cells, 2014, 122: 70-74. doi: 10.1016/j.solmat.2013.11.030
|
| [23] |
VYGRANENKO Y, KHOSROPOUR A, YANG R, et al. Lightweight amorphous silicon photovoltaic modules on flexible plastic substrate[J]. Canadian Journal of Physics, 2014, 92(7/8): 871-874. doi: 10.1139/cjp-2013-0566
|
| [24] |
MAYVILLE P, PATIL N V, PEARCE J M. Distributed manufacturing of after market flexible floating photovoltaic modules[J]. Sustainable Energy Technologies and Assessments, 2020, 42: 100830. doi: 10.1016/j.seta.2020.100830
|
| [25] |
KEMPE M. Overview of scientific issues involved in selection of polymers for PV applications[C]//Proceedings of the 37th IEEE Photovoltaic Specialists Conference. Piscataway: IEEE Press, 2011: 85-90.
|
| [26] |
JORGENSEN G J, MCMAHON T J. Accelerated and outdoor aging effects on photovoltaic module interfacial adhesion properties[J]. Progress in Photovoltaics: Research and Applications, 2008, 16(6): 519-527. doi: 10.1002/pip.826
|
| [27] |
POLVERINI D, FIELD M, DUNLOP E, et al. Polycrystalline silicon PV modules performance and degradation over 20 years[J]. Progress in Photovoltaics: Research and Applications, 2013, 21(5): 1004-1015. doi: 10.1002/pip.2197
|
| [28] |
SÁNCHEZ-FRIERA P, PILIOUGINE M, PELÁEZ J, et al. Analysis of degradation mechanisms of crystalline silicon PV modules after 12 years of operation in Southern Europe[J]. Progress in Photovoltaics: Research and Applications, 2011, 19(6): 658-666. doi: 10.1002/pip.1083
|
| [29] |
KOEHL M, HECK M, WIESMEIER S. Modelling of conditions for accelerated lifetime testing of Humidity impact on PV-modules based on monitoring of climatic data[J]. Solar Energy Materials and Solar Cells, 2012, 99: 282-291. doi: 10.1016/j.solmat.2011.12.011
|
| [30] |
KAWAI S, TANAHASHI T, FUKUMOTO Y, et al. Causes of degradation identified by the extended thermal cycling test on commercially available crystalline silicon photovoltaic modules[J]. IEEE Journal of Photovoltaics, 2017, 7(6): 1511-1518. doi: 10.1109/JPHOTOV.2017.2741102
|
| [31] |
REPINS I L, KERSTEN F, HALLAM B, et al. Stabilization of light-induced effects in Si modules for IEC 61215 design qualification[J]. Solar Energy, 2020, 208: 894-904. doi: 10.1016/j.solener.2020.08.025
|
| [32] |
KEMPE M D. Ultraviolet light test and evaluation methods for encapsulants of photovoltaic modules[J]. Solar Energy Materials and Solar Cells, 2010, 94(2): 246-253. doi: 10.1016/j.solmat.2009.09.009
|
| [33] |
KÖNTGES M, KUNZE I, KAJARI-SCHRÖDER S, et al. The risk of power loss in crystalline silicon based photovoltaic modules due to micro-cracks[J]. Solar Energy Materials and Solar Cells, 2011, 95(4): 1131-1137. doi: 10.1016/j.solmat.2010.10.034
|