[1] | REN Leliang, XIAN Yong, LIU Zhenyu, ZHANG Daqiao, LI Bing, LI Shaopeng. Reinforcement learning guidance law for maneuvering target interception based on imitation learning[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0284 |
[2] | ZHU Yuanjun, LI Yan, ZHANG Xuejun, ZHANG Weidong. Risk-Constrained Safe Path Planning for Unmanned Aerial Vehicles in Urban Airspace[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0843 |
[3] | JIN L,YANG S L. Fault-tolerant control of spacecraft attitude with prescribed performance based on reinforcement learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2404-2412 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0666. |
[4] | LIU B D,YU J S,HAN D Y,et al. Complex equipment troubleshooting strategy generation based on Bayesian networks and reinforcement learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1354-1364 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0449. |
[5] | LI Yan, WAN Zheng, DENG Cheng-zhi, WANG Sheng-qian. Edge intelligent transmission optimization of emergency surveillance video based on intra-clustered dynamic federated deep reinforcement learning[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0378 |
[6] | LI Hong, XU Chenyan, LIU Hengyu. Research on geomagnetic sensing navigation method based on deep reinforcement learning + simulated annealing[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0340 |
[7] | BAI F C,YANG X X,DENG X L,et al. Station keeping control for aerostat in wind fields based on deep reinforcement learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2354-2366 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0629. |
[8] | LIAO C Y,YU J S,LE X L. Optimization of office process task allocation based on deep reinforcement learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):487-498 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0290. |
[9] | HE Hai-yang, ZHAO Zhen-gen, KONG Fei. Longitudinal control of fixed-wing UAV based on deep reinforcement learning[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0075 |
[10] | DAI Shengtan, WANG Yin, SHANG Chenchen. Multi-unmanned vehicle collaborative path planning method based on deep reinforcement learning[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0377 |
[11] | LIU Ren-di, JIANG Ju, ZHANG Zhe, LIU Xiang. Direct lift control technology of carrier aircraft landing based on reinforcement learning[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0403 |
[12] | BAI Jing-bo, CHEN Yu, XIE Shi-yu, DAI Xin-wei. Design Method for Modulation Strategy of a Single-Inductor Multi-Port Converter Based on Reinforcement Learning[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0302 |
[13] | ZHANG Hao, ZHU Jian-wen, LI Xiao-ping, BAO Wei-min. Deep reinforcement learning intelligent guidance for intercepting high maneuvering targets[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0375 |
[14] | PAN D,ZHENG J H,GAO D. Fast 3D path planning of UAV based on 2D connected graph[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3419-3431 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0147. |
[15] | XIA J W,LIU Z K,ZHU X F,et al. A coordinated rendezvous method for unmanned surface vehicle swarms based on multi-agent reinforcement learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3365-3376 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0088. |
[16] | ZHU Jiazheng, WANG Cong, LI Xinkai, DONG Yingchao, ZHANG Hongli. A deep reinforcement learning based discrete state transition algorithm for fuzzy flexible job shop scheduling[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0211 |
[17] | GONG K Q,WEI H K,LI J W,et al. Trajectory optimization algorithm of skipping missile based on deep reinforcement learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1383-1393 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0436. |
[18] | SUN D,GAO D,ZHENG J H,et al. UAV reinforcement learning control algorithm with demonstrations[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1424-1433 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0466. |
[19] | ZHANG J L,YANG X X,DENG X L,et al. Altitude control of stratospheric aerostat based on deep reinforcement learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2062-2070 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0622. |
[20] | WU Lan, WU Yuanming, KONG Fanshi, LI Binquan. Traffic signal timing method based on deep reinforcement learning and extended Kalman filter[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(8): 1353-1363. doi: 10.13700/j.bh.1001-5965.2021.0529 |