Volume 50 Issue 10
Oct.  2024
Turn off MathJax
Article Contents
TONG G Y,WAN Y N,ZHANG L,et al. Mechanism analysis and process optimization of transverse cracking of hydraulic crushing hammer piston[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):2995-3004 (in Chinese) doi: 10.13700/j.bh.1001-5965.2024.0130
Citation: TONG G Y,WAN Y N,ZHANG L,et al. Mechanism analysis and process optimization of transverse cracking of hydraulic crushing hammer piston[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):2995-3004 (in Chinese) doi: 10.13700/j.bh.1001-5965.2024.0130

Mechanism analysis and process optimization of transverse cracking of hydraulic crushing hammer piston

doi: 10.13700/j.bh.1001-5965.2024.0130
Funds:  Key research and development program of Shandong Province (2018GGX104007); Open Fund of State Key Laboratory of Fluid Power and Mechatronic Systems (GZKF-202016); Henan Province Science and Technology Research Program (202102210081)
More Information
  • Corresponding author: E-mail:wanyinan@163.com
  • Received Date: 07 Mar 2024
  • Accepted Date: 11 May 2024
  • Available Online: 29 Oct 2024
  • Publish Date: 06 Jun 2024
  • In view of the phenomenon of piston transverse crack in crushing hammer, the paper analyzes the transverse crack of piston, and puts forward a new heat treatment process of piston. The piston material was analyzed by using a hardness tester and a metallographic microscope. It is found that the material composition and metallographic structure at the location of the piston transverse crack failure are in line with the design requirements, while the hardness and hardened layer depth are lower than the design. Using Ansys, the maximum stress of the piston is 1229.8 MPa, which exceeds the yield limit of the material by 850 MPa, and the maximum stress is located at the transverse crack of the piston. Fluent was used to solve the radial unbalance force on the piston. The maximum radial force and the minimum radial force in the oil return groove of the piston were 3408 N and 10 N. In the oil inlet groove of the piston, the maximum radial force is 15675 N and the minimum radial force is 73 N. The results show that the "stuck" phenomenon formed by the radial unbalanced force is the main reason for the transverse crack of the piston. A new heat treatment process such as extending the carburizing time of piston and increasing the number of times of piston straightening during heat treatment is proposed. The durability test shows that the proposed process can effectively solve the problem of piston transverse cracking.

     

  • loading
  • [1]
    连萌. 液压挖掘机破碎锤钎杆的冲击特性分析[J]. 黄河水利职业技术学院学报, 2017, 29(1): 46-50.

    LIAN M. The impact characteristics analysis of hydraulic excavator broken hammer drill rod[J]. Journal of Yellow River Conservancy Technical Institute, 2017, 29(1): 46-50(in Chinese).
    [2]
    周广星. 液压破碎锤回油孔处结构对卡紧力影响研究[J]. 液压气动与密封, 2021, 41(5): 68-70.

    ZHOU G X. Study on the effect of hydraulic crushing hammer on clamping force[J]. Hydraulics Pneumatics & Seals, 2021, 41(5): 68-70(in Chinese).
    [3]
    曹傲. 液压凿岩机的参数优化研究[D]. 西安: 长安大学, 2020.

    CAO A. Research on parameter optimization of hydraulic rock drill[D]. Xi’an: Changan University, 2020(in Chinese).
    [4]
    罗亮光. 内回转气动凿岩机活塞运动设计计算的新理念与实践[J]. 凿岩机械气动工具, 2021, 47(1): 6-15.

    LUO L G. New concepts and practices on design computation for movements of pistons in interanlly rotary pneumatic rock drills[J]. Rock Drilling Machinery & Pneumatic Tools, 2021, 47(1): 6-15(in Chinese).
    [5]
    高波, 徐雪锋, 夏剑辉. 液压凿岩机活塞应力分析[J]. 凿岩机械气动工具, 2020, 46(4): 15-20.

    GAO B, XU X F, XIA J H. Stress analysis of piston of hydraulic rock drill[J]. Rock Drilling Machinery & Pneumatic Tools, 2020, 46(4): 15-20(in Chinese).
    [6]
    SOKOLSKI M, SOKOLSKI P. Problems of strength estimation of the vulnerable zones in the tools of hydraulic hammers for mining[C]//Proceedings of the International Conference on Computer Aided Engineering. Berlin: Springer, 2019: 696-704.
    [7]
    SOKOLSKI M, SOKOLSKI P. Strength estimation of the impact zone–A critical area of the tools of the hydraulic hammers[J]. Archives of Civil and Mechanical Engineering, 2016, 16(4): 767-776. doi: 10.1016/j.acme.2016.04.007
    [8]
    BAKHSHANDI R K, TKACHUK A, SADEK M, et al. Failure analysis of two cylindrical impact pistons subjected to high velocity impacts in drilling applications[J]. Engineering Failure Analysis, 2022, 140: 106623. doi: 10.1016/j.engfailanal.2022.106623
    [9]
    ANDERSSON H, HOLMBERG L J, SIMONSSON K, et al. Simulation of leakage flow through dynamic sealing gaps in hydraulic percussion units using a co-simulation approach[J]. Simulation Modelling Practice and Theory, 2021, 111: 102351. doi: 10.1016/j.simpat.2021.102351
    [10]
    WANG J L, HAN B, WANG C, et al. Failure analysis of the piston used in a pneumatic down the hole impactor[J]. Engineering Failure Analysis, 2021, 127: 105561. doi: 10.1016/j.engfailanal.2021.105561
    [11]
    张涛. 某高功率柴油机活塞失效分析及解决方案[J]. 内燃机与配件, 2021(1): 23-25.

    ZHANG T. Analysis and solution on fracture failure of the piston used in a high power diesel engine[J]. Internal Combustion Engine & Parts, 2021(1): 23-25(in Chinese).
    [12]
    王中伟. 基于Workbench的液压碎石车工作装置有限元分析[J]. 凿岩机械气动工具, 2015(2): 18-24.

    WANG Z W. Finite element analysis of hydraulic rock breaker working device based on workbench[J]. Rock Drilling Machinery & Pneumatic Tools, 2015(2): 18-24(in Chinese).
    [13]
    HAO S R, SHEN Y X, CHENG J B. Phase field formulation for the fracture of a metal under impact with a fluid formulation[J]. Engineering Fracture Mechanics, 2022, 261: 108142. doi: 10.1016/j.engfracmech.2021.108142
    [14]
    LANG L, ZHU Z M, DENG S, et al. Study on the arresting mechanism of two arrest-holes on moving crack in brittle material under impacts[J]. Engineering Fracture Mechanics, 2020, 229: 106936. doi: 10.1016/j.engfracmech.2020.106936
    [15]
    HÜTTER G, ZYBELL L, KUNA M. Micromechanisms of fracture in nodular cast iron: From experimental findings towards modeling strategies–A review[J]. Engineering Fracture Mechanics, 2015, 144: 118-141. doi: 10.1016/j.engfracmech.2015.06.042
    [16]
    陈富强, 陈晓伟. 球墨铸铁曲轴断裂失效分析[J]. 金属热处理, 2011, 36(12): 124-126.

    CHEN F Q, CHEN X W. Fracture failure investigation on nodular cast iron crankshaft[J]. Heat Treatment of Metals, 2011, 36(12): 124-126(in Chinese).
    [17]
    闫佳兵. 船用柴油机活塞损坏原因分析[J]. 内燃机与配件, 2020(7): 163-164.

    YAN J B. Cause analysis of piston damage of marine diesel engine[J]. Internal Combustion Engine & Parts, 2020(7): 163-164(in Chinese).
    [18]
    王宏伟, 李君, 张峥, 等. 压缩机活塞杆断裂原因分析[J]. 材料工程, 2009, 37(12): 5-9.

    WANG H W, LI J, ZHANG Z, et al. Failure analysis on fracture of compressor piston rod[J]. Journal of Materials Engineering, 2009, 37(12): 5-9(in Chinese).
    [19]
    XU L Q, YU X K, HOU Z G. Analysis of the causes of driving gear shaft fractures in gear pumps[J]. Journal of Failure Analysis and Prevention, 2020, 20(1): 242-248. doi: 10.1007/s11668-020-00825-w
    [20]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 钢件渗碳淬火回火金相检验: GB/T 25744—2010[S]. 北京: 中国标准出版社, 2011.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Metallographic examination for carburizing quenching and tempering of steel parts: GB/T 25744—2010[S]. Beijing: Standards Press of China, 2011(in Chinese).
    [21]
    张明松, 苏志成, 王宏. 液压破碎锤动态特性的研究[J]. 南方农机, 2021, 52(3): 106-107.

    ZHANG M S, SU Z C, WANG H. Research on dynamic characteristics of hydraulic breaker[J]. China Southern Agricultural Machinery, 2021, 52(3): 106-107(in Chinese).
    [22]
    杨文军, 陈新元, 邓江洪. 间隙密封液压缸的活塞卡紧力分析[J]. 液压与气动, 2012(9): 107-109.

    YANG W J, CHEN X Y, DENG J H. Clamping force analysis of hydraulic cylinder with piston sealing[J]. Chinese Hydraulics & Pneumatics, 2012(9): 107-109(in Chinese).
    [23]
    朱德, 刘杰, 肖欣谕, 等. 基于Fluent的液压密封流体膜压力精确化研究[J]. 机床与液压, 2021, 49(10): 122-129.

    ZHU D, LIU J, XIAO X Y, et al. Precise study on fluid film pressure of hydraulic seal based on fluent[J]. Machine Tool & Hydraulics, 2021, 49(10): 122-129(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(20)  / Tables(5)

    Article Metrics

    Article views(63) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return