Wang Peng, Chen Wanchun, Zou Hui, et al. Agile turn control considerations for air-to-air missile with reaction jets control system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(05): 395-399. (in Chinese)
Citation: Wang Peng, Chen Wanchun, Zou Hui, et al. Agile turn control considerations for air-to-air missile with reaction jets control system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(05): 395-399. (in Chinese)

Agile turn control considerations for air-to-air missile with reaction jets control system

  • Received Date: 03 Jan 2003
  • Publish Date: 31 May 2004
  • The control problem of the air-to-air missile during the agile turn phase was investigated using the reaction jets control system, which can increase the off-borsight capability of short-range air-to-air missile and the capability of intercepting the rear hemispherical target. A method was proposed to control the orientation of the missile velocity by controlling the attitude of the missile, and this method proved feasible in theory. Considering the on-off property of thereaction jets control system, the sliding mode control method is used for attitude control. A sufficient condition for the reachability of the sliding mode is that the moment provided by the reaction jets control system should be no less than the maximum aerodynamical pitch moment. The feedback gain can be selected by nonlinear simulation or optimization. The results of nonlinear simulation showed once again the feasibility of the agile turn method proposed here. The sliding mode attitude control method also prove effective according to the results.

     

  • [1] Solis R E. An analysis of the vertical launch phase of a missile concept . AIAA-83-0569,1983 [2] 彭冠一,张福安,林维菘,等.防空制导武器制导控制系统设计[M].北京:宇航出版社,1996.450~466 Peng Guanyi, Zhang Fu'an, Lin Weisong, et al. Guidance and control system design of guided antiair weapons[M]. Beijing:Space Navigation Press, 1996. 450~466 (in Chinese) [3] Taur D R, Chern J S. Optimal thrust vector control of tactical missiles . AIAA-97-3475,1997 [4]Thukral A, Innocenti M. A sliding mode missile pitch autopilot synthesis for high angle of attack maneuvering [J]. IEEE Trans on Control Systems Technology, 1998, 6(3):359~371 [5]McFarland M B, Calise A J. Neural-adaptive nonlinear autopilot design for an agile anti-Air missile . AIAA-96-3914, 1996 [6]Menon P K, Iragavarapu V R. Adaptive techniques for multiple actuator blending .AIAA-98-4494, 1998 [7]Wise K A, Broy D J. Agile missile dynamics and control [J].Journal of Guidance, Control and Dynamics, 1998, 21(3):441~449
  • Relative Articles

    [1]YIN W Z,LIAN D P,LI K Y,et al. Manipulator force/position hybrid control based on staged adaptation[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):161-166 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0955.
    [2]WAN B,SU X C,WANG J,et al. A precise landing control method based on model predictive control algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1197-1207 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0383.
    [3]ZUO L,ZHANG X L,LI Z Y,et al. UAV control law design method based on active-disturbance rejection control[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1512-1522 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0488.
    [4]LIU S Y,YANG H L,ZHANG Z G,et al. Vibration control of flexible spacecraft with output constraints and external disturbances[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1560-1567 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0622.
    [5]ZHANG Y L,MA Z Z,SHI L,et al. Multi-agent coverage control based on communication connectivity maintenance constraints[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):519-528 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0340.
    [6]GUAN Y Z,FENG M. Application of active disturbance rejection control in gyro motor steady speed control[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):234-242 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0209.
    [7]ZHANG Y,YU H,YANG X X,et al. Adaptive group formation tracking-containment control for UAV swarm[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):97-109 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0264.
    [8]LIU H,HUANG S,TU H Y. Quadrotor sliding mode control based on predefined time[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1665-1674 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0481.
    [9]CHEN Y,JIANG Q L,WANG J S,et al. Current chopping control strategy of switched reluctance motor based on inductance characteristics[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):647-656 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0269.
    [10]SONG Z R,ZHAO J C,YANG W F. Boundary protection control method of helicopter power system based on flight test analysis[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):100-105 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0431.
    [11]WANG C Y,YANG L M,LI Y H. A mapping leader formation control strategy for multiple mobile robots based on two-stage sliding mode control[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3108-3114 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0792.
    [12]CHEN T T,WANG F Y,XIA C Y,et al. Tracking control of multi-agent systems based on persistent-hold mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3321-3327 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0065.
    [13]LI C,HE Y Z,HU Y. Characteristic model control of nutation target contact detumbling[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2977-2988 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0798.
    [14]XIA Xin-hui, JIA Ying-hong, ZHANG Jun. Spherical-caging-based control of a dual-arm space robot for capturing an object[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0258
    [15]WANG S Y,ZHANG J,YANG L Y. Attitude control law based on L1-ITD for a tail-sitter UAV[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2501-2509 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0681.
    [16]WANG T,JIAO H C,LIU J,et al. Design of attitude control method for ultra-low-orbit satellite with pneumatic steering gear[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):548-558 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0265.
    [17]YANG Yang, WANG Weijie, WANG Zhou, FAN Yahong, XUE Le. Momentum envelope analysis of magnetically suspended control sensitive gyroscope[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 2061-2069. doi: 10.13700/j.bh.1001-5965.2021.0071
    [18]ZHANG Yuan, HUANG Wanwei, LU Kunfeng, BAI Wenyan, YU Jianglong. Modeling and finite-time control for hypersonic morphing flight vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1979-1993. doi: 10.13700/j.bh.1001-5965.2021.0701
    [19]WANG Yingxun, SONG Xinyu, ZHAO Jiang, CAI Zhihao. Anti-disturbance trajectory tracking control method for aggressive quadrotors[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1806-1817. doi: 10.13700/j.bh.1001-5965.2022.0216
    [20]YIN Zengyuan, CAI Yuanwen, REN Yuan, WANG Weijie, CHEN Xiaocen, YU Chunmiao. Decoupled active disturbance rejection control method for magnetically suspended rotor based on state feedback[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1210-1221. doi: 10.13700/j.bh.1001-5965.2021.0021
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-032024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-02051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 28.1 %FULLTEXT: 28.1 %META: 70.3 %META: 70.3 %PDF: 1.6 %PDF: 1.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.2 %其他: 5.2 %其他: 0.6 %其他: 0.6 %China: 0.1 %China: 0.1 %Marknesse: 0.3 %Marknesse: 0.3 %Rochester: 0.3 %Rochester: 0.3 %北京: 1.7 %北京: 1.7 %南昌: 0.1 %南昌: 0.1 %哥伦布: 0.3 %哥伦布: 0.3 %天津: 0.3 %天津: 0.3 %扬州: 0.3 %扬州: 0.3 %杭州: 0.1 %杭州: 0.1 %深圳: 5.9 %深圳: 5.9 %漯河: 1.2 %漯河: 1.2 %芒廷维尤: 14.3 %芒廷维尤: 14.3 %芝加哥: 0.3 %芝加哥: 0.3 %西宁: 68.6 %西宁: 68.6 %西安: 0.3 %西安: 0.3 %郑州: 0.1 %郑州: 0.1 %其他其他ChinaMarknesseRochester北京南昌哥伦布天津扬州杭州深圳漯河芒廷维尤芝加哥西宁西安郑州

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(2844) PDF downloads(938) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return