Liu Xi, ong, Deng Zhidanget al. Research on the method of simulating road roughness numerically[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(9): 843-846. (in Chinese)
Citation: Wang Peng, Chen Wanchun, Zou Hui, et al. Agile turn control considerations for air-to-air missile with reaction jets control system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(05): 395-399. (in Chinese)

Agile turn control considerations for air-to-air missile with reaction jets control system

  • Received Date: 03 Jan 2003
  • Publish Date: 31 May 2004
  • The control problem of the air-to-air missile during the agile turn phase was investigated using the reaction jets control system, which can increase the off-borsight capability of short-range air-to-air missile and the capability of intercepting the rear hemispherical target. A method was proposed to control the orientation of the missile velocity by controlling the attitude of the missile, and this method proved feasible in theory. Considering the on-off property of thereaction jets control system, the sliding mode control method is used for attitude control. A sufficient condition for the reachability of the sliding mode is that the moment provided by the reaction jets control system should be no less than the maximum aerodynamical pitch moment. The feedback gain can be selected by nonlinear simulation or optimization. The results of nonlinear simulation showed once again the feasibility of the agile turn method proposed here. The sliding mode attitude control method also prove effective according to the results.

     

  • [1] Solis R E. An analysis of the vertical launch phase of a missile concept . AIAA-83-0569,1983 [2] 彭冠一,张福安,林维菘,等.防空制导武器制导控制系统设计[M].北京:宇航出版社,1996.450~466 Peng Guanyi, Zhang Fu'an, Lin Weisong, et al. Guidance and control system design of guided antiair weapons[M]. Beijing:Space Navigation Press, 1996. 450~466 (in Chinese) [3] Taur D R, Chern J S. Optimal thrust vector control of tactical missiles . AIAA-97-3475,1997 [4]Thukral A, Innocenti M. A sliding mode missile pitch autopilot synthesis for high angle of attack maneuvering [J]. IEEE Trans on Control Systems Technology, 1998, 6(3):359~371 [5]McFarland M B, Calise A J. Neural-adaptive nonlinear autopilot design for an agile anti-Air missile . AIAA-96-3914, 1996 [6]Menon P K, Iragavarapu V R. Adaptive techniques for multiple actuator blending .AIAA-98-4494, 1998 [7]Wise K A, Broy D J. Agile missile dynamics and control [J].Journal of Guidance, Control and Dynamics, 1998, 21(3):441~449
  • Relative Articles

    [1]TAN C,YU P,LI B,et al. Pressure cascade control of brake-by-wire unit based on direct drive pump-valve cooperative[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1163-1171 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0216.
    [2]YIN W Z,LIAN D P,LI K Y,et al. Manipulator force/position hybrid control based on staged adaptation[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):161-166 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0955.
    [3]WANG Y J,CHEN Q Y,GAO X Z,et al. Guidance and control method for dynamic net-recovery of UAV and the flight test verification[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):487-497 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0043.
    [4]WAN B,SU X C,WANG J,et al. A precise landing control method based on model predictive control algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1197-1207 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0383.
    [5]ZUO L,ZHANG X L,LI Z Y,et al. UAV control law design method based on active-disturbance rejection control[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1512-1522 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0488.
    [6]LIU S Y,YANG H L,ZHANG Z G,et al. Vibration control of flexible spacecraft with output constraints and external disturbances[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1560-1567 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0622.
    [7]ZHANG Y L,MA Z Z,SHI L,et al. Multi-agent coverage control based on communication connectivity maintenance constraints[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):519-528 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0340.
    [8]GUAN Y Z,FENG M. Application of active disturbance rejection control in gyro motor steady speed control[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):234-242 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0209.
    [9]ZHANG Y,YU H,YANG X X,et al. Adaptive group formation tracking-containment control for UAV swarm[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):97-109 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0264.
    [10]FAN Zhi-wen, SONG Xiao-juan, LU: Shu-feng, YUE Bao-zeng. Fixed-time sliding mode fault-tolerant control for liquid-filled spacecraft[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0736
    [11]LU Zheng-liang, XIE Hao-dong, NI Tao, XU Hao. Research on attitude compound control technology for Micro/Nanosatellite maneuvering segment[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0688
    [12]LIU H,HUANG S,TU H Y. Quadrotor sliding mode control based on predefined time[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1665-1674 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0481.
    [13]WANG C Y,YANG L M,LI Y H. A mapping leader formation control strategy for multiple mobile robots based on two-stage sliding mode control[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3108-3114 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0792.
    [14]CHEN T T,WANG F Y,XIA C Y,et al. Tracking control of multi-agent systems based on persistent-hold mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3321-3327 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0065.
    [15]LI C,HE Y Z,HU Y. Characteristic model control of nutation target contact detumbling[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2977-2988 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0798.
    [16]DENG B H,XU J F. Active disturbance rejection control of attitude of compound unmanned helicopter[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3100-3107 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0788.
    [17]CHEN Y,JIANG Q L,WANG J S,et al. Current chopping control strategy of switched reluctance motor based on inductance characteristics[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):647-656 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0269.
    [18]DENG Chen, CHEN Gong, AO Hou-jun, REN Si-yuan, DU Wen-tao. Design and implementation of a hardware-in-the-loop simulation system for interceptor composite control system[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0703
    [19]WANG S Y,ZHANG J,YANG L Y. Attitude control law based on L1-ITD for a tail-sitter UAV[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2501-2509 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0681.
    [20]WANG T,JIAO H C,LIU J,et al. Design of attitude control method for ultra-low-orbit satellite with pneumatic steering gear[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):548-558 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0265.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(2900) PDF downloads(938) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return