Volume 31 Issue 01
Jan.  2005
Turn off MathJax
Article Contents
Wang Yuanguang, Xu Xu, Cai Guobiaoet al. Analysis of design calculation methods of scramjet combustion chamber[J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(01): 69-73. (in Chinese)
Citation: Wang Yuanguang, Xu Xu, Cai Guobiaoet al. Analysis of design calculation methods of scramjet combustion chamber[J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(01): 69-73. (in Chinese)

Analysis of design calculation methods of scramjet combustion chamber

  • Received Date: 11 Jul 2003
  • Publish Date: 31 Jan 2005
  • To find a proper way to calculate the performance of scramjet combustor and evaluate the present methods, one-dimensional chemical dynamics method was brought forward and tested with several cases. Calculation was carried out with three different methods: impulse analysis, one-dimensional chemical dynamics and two-dimensional chemical dynamics. Based on the comparison of aerodynamic parameters in combustion chamber obtained with the above methods, results show that one-dimensional chemical dynamics method and impulse analysis method can consider the influence of friction, the variation of tunnel cross area and the heat release, so the above two methods can be used to calculate the scramjet combustion chamber, which is always easy designed in configuration. As for impulse analysis, it is necessary to set the heat release discipline in chemical reaction related calculation, whereas it is unnecessary for one-dimensional chemical dynamics method, with the internal chemical reaction model obtaining the corresponding discipline. The two-dimensional chemical dynamics method can figure out the detailed information in the flow field, with taking up too much time. It is evident that different models have different advantages, so it is valuable to make the best use of each model in different calculation situation.

     

  • loading
  • [1] 司徒明. 波载形高超声速巡航导弹与超燃冲压发动机的性能分析[J]. 战术导弹技术, 1995(4):53~57 Si Tuming. Waverider hypersonic cruising missile and performance analysis of scramjet [J]. Tactical Missile Technology, 1995(4):53~57(in Chinese) [2] Ikawa H. Rapid methodology for design and performance prediction of integrated SCRAMJET/hypersonic vehicle . AIAA89-2682,1989 [3] 刘敬华, 凌文辉,刘兴洲,等. 超音速燃烧室性能非定常准一维流数值模拟 [J]. 推进技术, 1998,19(1):2~3 Liu Jinghua, Ling Wenhui, Liu Xingzhou,et al. A quasi-one dimensional unsteady numerical analysis of supersonic combustor performance[J]. Journal of Propulsion Technology, 1998, 19(1):2~3(in Chinese) [4] Shuen Jianshun. Inviscid flux-splitting algorithms for real gases with non-equilibrium chemistry [J]. J Comput Phys, 1990,90(1):371~395 [5] 徐 旭,蔡国飙.氢/碳氢燃料超声速燃烧的数值模拟[J]. 推进技术, 2002,23(5):398~401 Xu Xu, Cai Guobiao. Numerical simulation on combustion of hydrogen/hydrocarbon in supersonic airstream[J]. Journal of Propulsion Technology, 2002, 23(5):398~401(in Chinese) [6] Evans J S, Schexnayder C J. Influence of chemical kinetics and unmixedness on burning in supersonic hydrogen flames[J]. AIAA Journal,1980, 18(2):188~193 [7] 吴子牛. 计算流体力学基本原理[M]. 北京:科学出版社, 2001 Wu Ziniu, Basic theory of computational fluid mechanics [M]. Beijing:Science Press, 2001(in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(2946) PDF downloads(1385) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return