Yao Shuzhen, Jin Maozhong. Strategy of state transition in UML based on Petri net[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(01): 79-83. (in Chinese)
Citation: Li Zhong, Wang Gang, Liu Jinget al. Analysis of model of concurrent multimedia workloads retrieving data form storage systems[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(11): 1043-1047. (in Chinese)

Analysis of model of concurrent multimedia workloads retrieving data form storage systems

  • Received Date: 25 Jun 2004
  • Publish Date: 30 Nov 2004
  • The multimedia applications need the guarantee of the QoS(quality of servi ce) when retrieving data form the storage systems, the fraction of requests whose response time exceeds a specific delay limit must below a certain proport ion. In the concurrent multimedia workloads, many applications access a storage system at the same time, Which makes it difficult to satisfy the QoS requireme nts. The aggregate requests of concurrent multimedia applications Poisson arrive the storage system, the storage system service time is exponential distribution, su ch stochastic process was abstracted as an M/M/1 queuing model. Based on the que uing model, the relationship between the number of concurrent multimedia applica tions and the statistical distribution of the requests response time was determi ned, the relationship can be used to guarantee the QoS of concurrent multimedia applications. The experimental results validate the novel model is accurate.

     

  • [1] Schmitt J, Wolf L. Quality of service-an overview . TR-KOM-1997-01, 1997 [2]Ruemmler C, Wilkes J. An introduction to disk drive modeling [J]. Computer,1994,27(3):17~28 [3]Shriver E. Performance modeling for realistic storage devices . New York:Department of Computer Science, New York University, 1997 [4]Patterson D, Gibson G, Katz R. A case for redundant arrays of inexpensive disks ( RAID ) . In:Proc of 1988 ACM SIGMOD Int'l Conf on Management of Data . New York:ACM Press, 1988.109~116 [5]Leung Yiu Wing, Chan T K C. Design of an interactive video-on-demand system[J]. Multimedia, IEEE Transactions, 2003,5(1):130~140 [6]Cooper R B. Introduction to queuing theory [M]. Second Edition. New York:Elsevier North Holland Inc, 1981 [7]Bucy J S, Ganger G R. The disksim simulation environment version 3.0 reference manual . CMU-CS-03-102, 2003
  • Relative Articles

    [1]ZHANG Xin-ze, LI Qin, WENG Yi-hui, YOU Yan-cheng. Numerical analysis and flow state prediction of double wedge steady/unsteady flow at different Ma、Re[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0758
    [2]SHI Tong, HE Yunqin, LIANG Guozhu, PAN Hui, ZHU Pingping. Theoretic model of flow resistance for gas-filled accumulators in liquid rockets[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0748
    [3]WU Z Y,GAO Z X,CHEN X M,et al. Mach number effect in shock-wave/turbulent-boundary-layer interaction flow[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3484-3494 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0857.
    [4]CUI Y P,LI Z H,ZHENG G L. Computing convex hull of a generic polygon with simulation of progressive support for an elastic line[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):216-223 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0246.
    [5]ZHANG X J,XU C,TIAN F,et al. Utility-enhanced synthesis method of differentially private trajectories[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3615-3631 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.1013.
    [6]CHEN B,LUO L,JIANG A L,et al. Numerical simulation of separation characteristics for internally buried weapon at high Mach number[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2113-2122 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0627.
    [7]XUAN L M,ZOU Z P,ZENG F. Analyzing and modeling flow in tip clearance of transonic turbine rotor[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2374-2384 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0635.
    [8]ZHANG P H,TANG Y,TANG J,et al. Simulation of cavity flow at high Mach number based on adaptive unstructured hybrid mesh[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1311-1318 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0424.
    [9]HAN Y F,HU X S,GAO Y,et al. Comparison of turbulence models for unsteady flow simulation in a long and narrow cabin[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):957-964 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0335.
    [10]HE Z P,ZHOU J X,XIN J,et al. Unsteady flow characteristics of turbine rotor passage under rim seal effect[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):273-283 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0223.
    [11]WANG Wei-jie, WANG Zhou, PANG Wei-kun, YANG Yang. Research on Angular Momentum Envelope Analysis Method of Frame Momentum Exchange Device[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0268
    [12]ZHANG P H,CHENG X H,CHEN H Y,et al. Unsteady flow mechanism of high Mach number cavity[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):1940-1947 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0609.
    [13]MENG L K,ZHU Y C,DING J J,et al. Influence of wedge erosion deformation on working characteristics of jet pipe servo valve[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3177-3187 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0041.
    [14]BI Y P,ZHANG T,HE Y T,et al. Corrosion and fatigue life prediction of aircraft typical lap structures based on life envelope[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2200-2206 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0604.
    [15]LYU Z Y,NIE X Y,ZHAO A B. Prediction of wing aerodynamic coefficient based on CNN[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):674-680 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0276.
    [16]WANG R C,ZHANG G X,WANG X Y,et al. Aerodynamic performance analysis of supercritical airfoil with lower surface jet[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1671-1679 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0489.
    [17]ZHANG P H,CHEN H Y,ZHANG J,et al. Passive flow control for weapon bay at high Mach number[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2913-2920 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0790.
    [18]CHEN Z L,LU Z X,XIAO T H,et al. Effect of local oscillation on aerodynamics of thin airfoil in Mars environment[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2938-2950 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0032.
    [19]FANG Yifang, XIANG Gaoxiang, TANG Chun'e, SHI Yuejuan. Numerical simulation on internal flow performances of multi-stage pressure drop valve[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1915-1924. doi: 10.13700/j.bh.1001-5965.2021.0070
    [20]YANG Lijun, HUANG Dongqi, HAN Wang, LI Jingxuan, FU Qingfei. Influence of flow topology on instability and atomization of liquid jets[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1757-1766. doi: 10.13700/j.bh.1001-5965.2022.0608
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(3158) PDF downloads(1072) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return