Citation: | Sun Mao, Wu Jianghao. Unsteady lift mechanisms and energetic in flying insects[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(11): 970-977. (in Chinese) |
[1] Weis-Fogh T. Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production [J]. J Exp Biol, 1973, 59:169~230 [2] Ellington C P. The aerodynamics of hovering insect flight. II. Morphological parameters [J]. Phil Trans R Soc Lond B, 1984, 305:17~40 [3] Ellington C P. Aerodynamics of hovering insect flight. III. Kinematics. Phil Trans R Soc Lond B, 1984, 305:41~78 [4] Vogel S. Flight in drosophila. III. Aerodynamic characteristics of fly wings and wing models [J]. J Exp Biol, 1967, 44:431~443 [5] Wakeling J M, Ellington C P. Dragonfly flight I. Gliding flight and steady-state aerodynamic forces [J]. J Exp Biol, 1997, 200:543~556 [6] Ellington C P. The aerodynamics of hovering insect flight. Ⅵ. Lift and power requirements [J]. Phil Trans R Soc Lond B, 1984, 305:145~181 [7] Vogel S. Flight in drosophila. I. Flight performance of tethered flies. J Exp Biol, 1966, 44:567~578 [8] David C T. The relationship between body angle and flight speed in free-flying drosophila [J]. Physical Ent, 1978, 3:191~195 [9] Zanker J M. The wing beat of drosophila melanogaster. I. Kinematics [J]. Phil Trans R Soc Lond B, 1990, 327:1~18. [10] Dickinson M H, Lehman F O, Sane S P. Wing rotation and the aerodynamic basis of insect flight [J]. Science, 1999, 284:1954~1960. [11] Dudley R, Ellington C P. Mechanics of forward flight in bumblebees. I. Kinematics and morphology [J]. J Exp Biol, 1990, 148:19~52. [12] Willmott A P, Ellington C P. The mechanics of flight in the hawkmoth Manduca sexta. I. Kinematics of hovering and forward flight [J]. J Exp Biol, 1997, 200:2705~2722. [13] Usherwood J R, Ellington C P. The aerodynamics of revolving wings. I. Model hawkmoth wings [J]. J Exp Biol, 2002, 205:1547~1564. [14] Usherwood J R, Ellington C P. The aerodynamics of revolving wings. II. Propeller force coefficients from mayfly to quail [J]. J Exp Biol, 2002, 205:1565~1576. [15] Ennos A R. The kinematics and aerodynamics of the free flight of diptera [J]. J of Exp Biol, 1989, 142:49~85. [16] Lighthill M J. On the Weis-Fogh mechanism of lift generation [J]. J Fluid Mech, 1973, 60:1~17. [17] Maxworthy T. Experiments on the Weis-Fogh mechanism of lift generation by insects in hovering flight. Part Ⅰ. Dynamics of the fling [J]. J Fluid Mech, 1979, 93:47~63. [18] Dickinson M H, Gotz K G. Unsteady aerodynamic performance of model wings at low Reynolds numbers [J]. J Exp Biol, 1993, 174:45~64. [19] Ellington C P, van den Berg C, Willmott A P, Thomas A L R. Leading edge vortices in insect flight [J]. Nature, 1996, 384:626~630. [20] Van den Birg C, Ellington C P. The three-dimensional leading-edge vortex of a 'hovering' model howkmoth [J]. Phil Trans R Soc Lond B, 1997, 352:329~340. [21] Birch J M, Dickinson M H. Spanwise flow and the attachment of the leading edge vortex on insect wings [J]. Nature, 2001, 412:729~733. [22] Liu H, Ellington C P, Kawachi K, et al. A computational fluid dynamic study of hawkmoth hovering [J]. J Exp Biol, 1998, 201:461~477. [23] Wang Z J. Vortex shedding and frequency selection in flapping flight [J]. J Fluid Mech, 2000a, 410:323~341. [24] Lan S L, Sun M. Aerodynamic properties of a wing performing unsteady rotational motions at low Reynolds number [J]. Acta Mech, 2001, 149:135~147. [25] Sun M, Tang J. Unsteady aerodynamic force generation by a model fruit-fly wing [J]. J Exp Biol, 2002a, 205:55~70. [26] Birch J M, Dickinson M H. The Influence of wing-wake interactions on the production of aerodynamic forces in flapping flight [J]. J Exp Biol, 2003, 206:2257~2272. [27] Fry S N, Sayaman R, Dickinson M H. The Aerodynamics of Free-Flight Maneuvers in Drosophila [J]. Science, 2003, 300:495-498. [28] Sun M, Du G. Lift and power requirements of hovering insects flight [J]. Acta Mech Sinica, 2003, 19(5):458~469. [29] Sane S P, Dickinson M H. The control of flight force by a flapping wing:lift and drag production [J]. J Exp Biol, 2001, 204:2607~2626. [30] Lehman F O, Dickinson H D. The changes in power requirements and muscle efficiency during elevated force production in the fruitfly Drosophila melanogaster [J]. J Exp Biol, 1997, 200:1133~1143. [31] Sun M, Tang J. Lift and power requirements of hovering flight in Drosophila virilis [J]. J Exp Biol, 2002b, 205:2413~2427. [32] Ellington C P, Machin K E, Casey T M. Oxygen consumption of bumblebees in forward flight [J]. Nature, 1990, 347:472~473. [33] Sun M, Wu J H. Lift generation and power requirements of fruitfly in forward flight with modeled wing motion [J]. J Exp Biol, 2003, 206:3065~3083. [34] Norberg R A. Hovering flight of the dragonfly Aeschna juncea L, kinematics and aerodynamics. In:Wu T Y, Brokaw C J, Brennen C. Swimming and Flying in Nature. NewYork, Plenum Press, 1975. 763~781. [35] Wakeling J M, Ellington C P. Dragonfly flight. Ⅱ. Velocities, accelerations and kinematics of flapping flight [J]. J Exp Biol, 1997b, 200:557~582. [36] Wakeling J M, Ellingtan C P. Dragonfly flight III. Lift and power requirements [J]. J Exp Biol, 1997a, 200:583~600. [37] Somps C, Luttges M. Dragonfly flight:novel uses of unsteady separation flows [J]. Science, 1985, 28:1326~1328. [38] Saharon D, Luttges M. Visualization of unsteady separated flow produced by mechanically driven dragonfly wing kinematics model [J]. AIAA Paper, 88-0569,1998. [39] Wang Z J. Two dimensional mechanism for insect hovering [J]. Physical Rev Lett, 2000b, 85:2216~2219. [40] Sun M, Lan S L. A study on the aerodynamics of a dragonfly in hovering flight [J]. Acta Mech Sinica, 2003, 19(6)(in Press)
|