Zhang Junjie. Wind Tunnel Test for Roll/Lateral Aeroservoelasticity of Aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(2): 120-123. (in Chinese)
Citation: Du Zongxia, Huai Jinpeng, Wang Yong, et al. Research and implementation of composite Web service supporting system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(10): 889-892. (in Chinese)

Research and implementation of composite Web service supporting system

  • Received Date: 05 Jun 2003
  • Publish Date: 31 Oct 2003
  • To realize inter-enterprise business process integration, the requirement of composite Web service supporting system was analyzed. Based on the requirement, the principle of system and the architecture were proposed. With this system, you can design, deploy, execute and monitor the composite Web service.The dynamic composition method was proposed to satisfy the dynamics in the inter-enterprise environment.

     

  • [1] Piccinelli G. Service provision and composition in virtual business communities . [2] UDDI Org. UDDI technical white paper . [3] IBM Corporation. Web services description language . [4] W3C Group. Simple object access protocol (SOAP) 1.2 .[5] Gamma E著.设计模式[M]. 李英军,马晓星,蔡 敏,等译. 北京:机械工业出版社, 2000 Eamma E. Design pattern[M]. Translated by Li Yingjun, Ma Xiaoxing, Cai Min, et al. Beijing:China Machine Press, 2000(in Chinese)
  • Relative Articles

    [1]PENG Y T,WEN X X,WU M G,et al. Complex network-based air traffic complexity analysis in TBO[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1234-1244 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0231.
    [2]SHI T X,CHEN L S,LI T S,et al. Distributed adaptive anti-disturbance control for power systems based on multi-agents[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1685-1692 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0496.
    [3]LIU W,YAN S,WANG X B,et al. Consensus control of multi-agent systems with uncertain communication networks[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1463-1473 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0518.
    [4]BU Xueqin, LIU Yiming, LIN Guiping, YU Jia, YU Kunyang. Review of key technologies of on-board intelligent oxygen system[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0615
    [5]YU Z,ZHANG Z N. Traffic situation orientation and implementation method in terminal areas[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3894-3902 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0929.
    [6]LIU W,JIA S L. Robust traffic flow prediction based on graph contrastive learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):122-133 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0230.
    [7]WANG X L,WEI Y W,HE M. Structural characteristics and resilience evaluation of air traffic CPS[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1187-1196 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0313.
    [8]LI R N,FENG X,YAO Y P,et al. Multi-objective optimization of airport runway construction schemes based on improved genetic algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3720-3728 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0893.
    [9]WANG Z Q,LI J,LI J,et al. UAV swarm decision methods under weak information interaction conditions[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3489-3499 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0066.
    [10]WEN C,DONG W H,XIE W J,et al. Multi-UAVs 3D cooperative curve path planning method based on CEA-GA[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3086-3099 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0787.
    [11]CHEN S Z,LI D C,XIANG J W. Design optimization of tow-steered composite structure targeting on manufacturing cost[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2423-2431 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0677.
    [12]JIANG L,SUN R,LIU Z W,et al. Modeling and accuracy analysis of GNSS ionospheric error in EU-China based on GA-BP[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1533-1542 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0476.
    [13]HE J C,HE Z X,WANG F S,et al. Circuit area optimization of multi-output MPRM based on ERWOA algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1193-1200 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0410.
    [14]YAN Y,MA X L. Air freight route planning based on transshipment under air alliance[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):115-127 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0166.
    [15]FENG X Y,CHEN Z L,JI N,et al. Short-term traffic state prediction under planned special events[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2721-2730 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0758.
    [16]SHI T,ZHUANG X B,LIN Z J,et al. Satellite selection based on parallel genetic algorithm for high orbit autonomous satellite navigation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3528-3536 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0118.
    [17]YANG B,HE Y Z,XU F,et al. Using improved genetic algorithm for software fault localization aided test case generation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2279-2288 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0524.
    [18]JIANG Hao, LIU Jixin, DONG Xinfang. Dynamic collaborative sequencing for departure flights based on traffic state[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 2048-2060. doi: 10.13700/j.bh.1001-5965.2021.0066
    [19]WU Lan, WU Yuanming, KONG Fanshi, LI Binquan. Traffic signal timing method based on deep reinforcement learning and extended Kalman filter[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(8): 1353-1363. doi: 10.13700/j.bh.1001-5965.2021.0529
    [20]ZHANG Libo, LI Yupeng, ZHU Deming, FU Yongling. Inverse kinematic solution of nursing robot based on genetic algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1925-1932. doi: 10.13700/j.bh.1001-5965.2021.0042
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(2473) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return