HUANG Yong, WU Dong-ying, WANG Jin-tao, et al. Further Assessment of the NO x Emission from CAAC Fleet over China[J]. Journal of Beijing University of Aeronautics and Astronautics, 2001, 27(3): 289-292. (in Chinese)
Citation: Li Yunchun, Li Wei, Qian Depeiet al. Self-organizing network measurement infrastructure[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(10): 939-942. (in Chinese)

Self-organizing network measurement infrastructure

  • Received Date: 05 Jun 2003
  • Publish Date: 31 Oct 2003
  • To solve the problem of deploying the network measurement node in a large scale distributed environment, a management mechanism based on hierarchical overlay network was introduced to make all measurement nodes self-organizedinto equivalent classes and reduce inconsistence introduced by manual intervene. This work combined P2P policy with gird measurement architecture (GMA), and improve the expansibility and scalability of the measurement infrastructure.

     

  • [1] Foster, Kesselman C,Nick J, et al. The physiology of the grid:an open grid services architecture for distributed systems integration . [2] Lowekamp B, Tierney B, Cottrell L. A hierarchy of network measurement for grid application and service draft . [3] Wolski R, Speing N T, Hayes J. The network weather service:a distributed resource performance forecasting service for metacomputing[J]. Journal of Future Generation Computing Systems, 1999,15(5-6):757~768[4] Miller N, Steenkiste P. Collecting network status information for network-aware applications . Proceedings IEEE INFOCOM 2000 . Tel Aviv, Israel, 2000, 641~650[5] Tierney B, Crowley B, Gunter D, et al. A monitoring sensor management system for grid environments . Proceedings of the Ninth IEEE International Symposium on High Performance Distributed Computing (HPDC 9) . Pennsylvania, USA, 2000, 97~104[6] Tierney B, Aydt R, Gunter D, et al. A grid monitoring architecture, grid working document GWD-Perf-16-3, global grid forum, performance working group . [7] Curbera F, Nagy W, Weerawarana S. Web srvices:why and how . OOPSLA 2001 Workshop on Object-Oriented Web Services . Florida,USA, 2001[8] Erice L G, Biersack E W, Felber P A, et al. Hierarchical peer-to-peer system . [9] Stoica I, Morris R, Karger D, et al. Chord:a scalable peer-to-peer lookup service for internet application . Proceedings of ACM SIGCOMM'01 . San Diego ,USA, 2001, 149~160
  • Relative Articles

    [1]JI N,LIU J,WANG H R,et al. Simulation analysis and experimental study on stiffness and fatigue life fluctuation of leaf spring rubber bearings[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(5):1726-1734 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0263.
    [2]YANG Ling, ZENG Fei, WEN Jiongran, REN Qizhen, FEI Chengwei. LCF life reliability analysis method of turbine blisk based on intelligent learning[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2025.0030
    [3]WAN Ru, MA Zi-yuan, GONG Hua-jun, WANG Xin-hua, ZHANG Shuai. Design of unmanned aerial vehicle formation keeping controller based on improved consistency algorithmesign[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0505
    [4]CAI Y,SI Y H,WANG Y Z,et al. Design and application of EMD-ARIMA drift model for flexible gyro[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3434-3444 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0871.
    [5]YU Y B,HE Z Q,HE X F,et al. Rotating bending fatigue life prediction of bearing steel based on damage mechanics[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2585-2594 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0639.
    [6]ZHANG Luyihang, YANG Yanming, CHEN Yongzhan, LI Junliang, DAI Haomin. Remaining Useful Life life prediction of variable-operating turbofan engine based on VMD-CNN-BiLSTM[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2021.0051
    [7]YANG J X,TANG S J,LI L,et al. Remaining useful life prediction based on implicit nonlinear Wiener degradation process[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):328-340 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0243.
    [8]HUO Jiuyuan, LI Xin, CHANG Chen, LI Yufeng, ZHANG Yaonan. Roll bearing life prediction based on multi-scale feature fusion[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0161
    [9]TONG G Y,WAN Y N,ZHANG L,et al. Mechanism analysis and process optimization of transverse cracking of hydraulic crushing hammer piston[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):2995-3004 (in Chinese). doi: 10.13700/j.bh.1001-5965.2024.0130.
    [10]ZHAO H L,BAI L D. Remaining life prediction of engine by improved similarity with interval partition[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3005-3012 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0762.
    [11]TIAN Gui-shuang, WANG Shao-ping, SHI Jian. Reliability model and lifetime prediction for train traction system considering multiple dependent components[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0797
    [12]MA L Q,SUN X Z. Design of flight control system for BWB civil aircraft considering safety[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):804-814 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0341.
    [13]ZHAO Yu-yu, SUO Chao, WANG Yu-xiao. BSVAR-based remaining useful life prediction for aircraft engines[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0643
    [14]ZHOU Z T,LIU L,SONG X,et al. Remaining useful life prediction method of rolling bearing based on Transformer model[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):430-443 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0247.
    [15]WANG F F,TANG S J,SUN X Y,et al. Remaining useful life prediction based on multi source information with considering random effects[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3075-3085 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0782.
    [16]BI Y P,ZHANG T,HE Y T,et al. Corrosion and fatigue life prediction of aircraft typical lap structures based on life envelope[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2200-2206 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0604.
    [17]WANG K,GUO Y Q,ZHAO W L,et al. Remaining useful life prediction of aeroengine based on SSAE and similarity matching[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2817-2825 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0741.
    [18]LEI J Y,LEI Q N,LI H B,et al. A mesh parameterization method and life reliability-based optimization for turbine blade[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2651-2659 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0708.
    [19]KANG Rui, LIU Haoran, ZHANG Qingyuan, YU Li, ZHAI Guofu. Function oriented belief reliability design and optimization of new torsion spring electrical connectors[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1745-1756. doi: 10.13700/j.bh.1001-5965.2022.0323
    [20]FENG Jianguang, ZHENG Zixia, LONG Dongteng, ZHOU Bo, LU Mingquan, ZHENG Heng. Method for predicting on-orbit residual life of satellite atomic clock[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2215-2221. doi: 10.13700/j.bh.1001-5965.2021.0087
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(2689) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return