Citation: | Wang Hengyu, Lee Chunhian. Development of a reaction-diffusion model for erosion and identification of the associated diffusion coefficient[J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(03): 293-297. (in Chinese) |
[1] Levine A S. LDEF-69 month in space:first post-retrieval symposium. NASA-CP-3134, 1991 [2] Levine A S. LDEF-69 month in space:second post-retrieval symposium. NASA-CP-3194, 1992 [3] Levine A S. LDEF-69 month in space:third post-retrieval symposium. NASA-CP-3275,1995 [4] Lee C H, Chen L W. Reaction probability of atomic oxygen with material surfaces in low earth orbit [J] Journal of Spacecraft and Rockets, 2000, 37(2):252~256 [5] 王广厚. 粒子同固体相互作用物理学[M] 北京:科学出版社, 1988 Wang Guanghou. Physics of interaction between particles and solid[M] Beijing:Science Press, 1988(in Chinese) [6] Kitabatake M, Fons P, Greene J E. Molecular dynamics simulations of low-energy particle bombardment effects during vapor-phase crystal growth:10eV Si atoms incident on Si (001)2×1 surfaces [J] Journal of Vacuum Science and Technology A, 1990, 8(5):3726~3735 [7] Lagouas D C, Ma X, Miller D A, et al. Modeling of oxidation in metal matrix composites [J] International Journal of Engineering Science, 1995, 33(15):2327~2343 [8] Leger L J, Visentine J T, Kuminecz J F. Low earth orbit atomic oxygen effects on surface. AIAA-84-0548, 1984 [9] Whitaker A F, Jang B Z. The mass loss mechanisms of polymers in a radio frequency induced atomic oxygen environment [J] Journal of Applied Polymer Science, 1993, 48:1341~1367
|