Zhang Jin, Li Zailiang. Equivalent inter-phase model of dynamic response to thin layer of different mechanical properties in engineering structures[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(11): 1029-1032. (in Chinese)
Citation: DAI Ji-yang, MAO Jian-qin, XU Dong-shenget al. Novel Fault Detection Approach and Its Application to Helicopter Actuators[J]. Journal of Beijing University of Aeronautics and Astronautics, 2002, 28(4): 383-386. (in Chinese)

Novel Fault Detection Approach and Its Application to Helicopter Actuators

  • Received Date: 23 Oct 2000
  • Publish Date: 30 Apr 2002
  • A new fault detection approach was presented, in which a key coefficient group consisting of partial wavelet coefficients was used to describe fault features, a fuzzy-tree was taken as the model of fault feature classification. As an example,the method was applied to the real-time fault detection of the actuators of UH-60A helicopter. Simulation results showed that the proposed fault detection technique possesses satisfactory detecting accuracy, good capability of overcoming noises, and the function of trailing changes in system parameters. Furthermore, the detecting precision can be markedly improved by increasing the number of wavelet coefficients in the key coefficient group.

     

  • [1] 周东华,孙优贤.控制系统的故障检测与诊断技术[M].北京:清华大学出版社,1994. [2]Daubechies I. The wavelet transform, time-frequency localization and signal analysis[J]. IEEE Trans Info Theory, 1990, 36(5):961~1005. [3]张建刚.复杂系统辨识——方法、软件及应用研究 . 北京:北京航空航天大学理学院, 1999. [4]方崇智, 萧德云. 过程辨识[M]. 北京:清华大学出版社,1988. [5]叶 昊.小波变换在系统辨识和故障诊断中的应用 .北京:清华大学自动化系, 1996. [6]Ballin M G. Validation of a real-time engineering simulation of the UH-60A helicopter . NASA TM-88360, 1987.
  • Relative Articles

    [1]CHEN P X,WU C C,NI Z Y. Dynamic modelling and simulation of a tethered-net in space[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2951-2962 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0747.
    [2]LI H H,HAN Y H. Robust anti-swing technology for helicopter slung load based on wave control[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1629-1638 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0326.
    [3]YAN Kun, ZHAO Jin-ze, CHEN Chao-bo, GAO Song, CAO Kai. Neural network-based fault tolerant control for unmanned helicopter with multiple actuator faults[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0699
    [4]WANG Y P,WANG Y,WU X J,et al. Surface dynamical environment analysis of a binary asteroid system[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):940-950 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0286.
    [5]TAN J F,YANG Y X,ZHANG W G,et al. Influence of crosswind on helicopter brownout[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3111-3122 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0794.
    [6]XU H B,FAN J,NI M,et al. Molecular dynamics study on dry friction damper with temperature influence[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3031-3038 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0045.
    [7]DENG B H,XU J F. Active disturbance rejection control of attitude of compound unmanned helicopter[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3100-3107 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0788.
    [8]SHI Y,WAN Z Q,WU Z G,et al. Aerodynamic order reduction method for elastic aircraft flight dynamics simulation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1689-1706 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0510.
    [9]ZHANG X C,WAN Z Q,YAN D. Optimal active twist control for rotor vibration reduction[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3397-3408 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0105.
    [10]WU X J,HAN X R,WU X L,et al. Prescribed performance control for quadrotor UAV with unknown kinetic parameters[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2587-2595 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0714.
    [11]TAN J F,HAN S,WANG C,et al. Accelerated computational method of helicopter brownout based on DEM[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1352-1361 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0450.
    [12]JIN Z B,LI D C,SUN Y,et al. Man-machine cooperative control of helicopter and flight experimental validation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3022-3030 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0038.
    [13]SONG Z R,ZHAO J C,YANG W F. Boundary protection control method of helicopter power system based on flight test analysis[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):100-105 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0431.
    [14]ZHANG Zhao, PENG Yiming, ZHOU Fuliang, WEI Xiaohui, NIE Hong, YANG Gang. Analysis and optimization of dynamic characteristics of air-cooled launcher for fold-rotor UAV[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1951-1959. doi: 10.13700/j.bh.1001-5965.2021.0059
    [15]WU Tailong, WANG Yue. Orbital dynamics of rings of small bodies[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1287-1296. doi: 10.13700/j.bh.1001-5965.2021.0003
    [16]HUANG Mingqi, WANG Liangquan, YUAN Honggang, PENG Xianmin, ZHANG Guichuan. Icing wind tunnel investigation of helicopter rotor model in forward flight state[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(6): 929-936. doi: 10.13700/j.bh.1001-5965.2020.0703
    [17]Yue Ronggang, Wang Shaoping. Dynamic modeling for a climbing robot[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(5): 640-644.
    [18]Liu Hongmei, Lü Chen, Ouyang Pingchao, Wang Shaoping. Helicopter rotor tuning based on neural network and particle swarm optimization[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(3): 283-288.
    [19]Xue Liangru, Wang Shaoping. Dynamics analysis and modeling of helicopter rotor test-bed[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(3): 296-299.
    [20]Wang Chuang, Liu Rongqiang, Deng Zongquan, Gao Haibo. Dynamics analysis of lunar lander-s landing process[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(04): 381-385.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(2897) PDF downloads(818) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return